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Abstract. Is it possible to use convolutional neural networks pre-trained
without any natural images to assist natural image understanding? The
paper proposes a novel concept, Formula-driven Supervised Learning.
We automatically generate image patterns and their category labels by
assigning fractals, which are based on a natural law existing in the back-
ground knowledge of the real world. Theoretically, the use of automat-
ically generated images instead of natural images in the pre-training
phase allows us to generate an infinite scale dataset of labeled images.
Although the models pre-trained with the proposed Fractal DataBase
(FractalDB), a database without natural images, does not necessarily
outperform models pre-trained with human annotated datasets at all set-
tings, we are able to partially surpass the accuracy of ImageNet/Places
pre-trained models. The image representation with the proposed Frac-
talDB captures a unique feature in the visualization of convolutional
layers and attentions. The datasets, codes and pre-trained models used
in this study will be publicly available: https://hirokatsukataoka16.
github.io/Pretraining-without-Natural-Images/.

1 Introduction

The introduction of sophisticated pre-training image representation has lead
to a great expansion of the potential of image recognition. Image representa-
tions with e.g., the ImageNet/Places pre-trained convolutional neural networks
(CNN), has without doubt become the most important breakthrough in recent
years [1,2]. We had lots to learn from the ImageNet project, such as huge amount
of annotations done by crowdsourcing and well-organized categorization based
on WordNet [3]. However, due to the fact that the annotation was done by a
large number of unspecified people, most of whom are unknowledgeable and not
experts in image classification and the corresponding areas, the dataset contains
mistaken, privacy-violated, and ethics-related labels [4,5]. This limits the Ima-
geNet to only non-commercial usage because the images included in the dataset
does not clear the right related issues. We believe that this aspect of pre-trained
models significantly narrows down the prospects of vision-based recognition.

https://hirokatsukataoka16.github.io/Pretraining-without-Natural-Images/
https://hirokatsukataoka16.github.io/Pretraining-without-Natural-Images/
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(a) The pre-training framework with Fractal ge-
ometry for feature representation learning. We
can enhance natural image recognition by pre-
training without natural images.

(b) Accuracy transition among
ImageNet-1k, FractalDB-1k and
training from scratch.

Fig. 1. Proposed pre-training without natural images based on fractals, which is a
natural formula existing in the real world (Formula-driven Supervised Learning). We
automatically generate a large-scale labeled image dataset based on an iterated function
system (IFS).

We begin by considering what a pre-trained CNN model with a million nat-
ural images is. In most cases, representative image datasets consist of natural
images taken by a camera that express a projection of the real world. Although
the space of image representation is enormous, a CNN model has been shown
to be capable of recognition of natural images from among around one million
natural images from the ImageNet dataset. We believe that labeled images on
the order of millions have a great potential to improve image representation as
a pre-trained model. However, at the moment, a curious question occurs: Can
we accomplish pre-training without any natural images for parameter fine-tuning
on a dataset including natural images? To the best of our knowledge, the Im-
ageNet/Places pre-trained models have not been replaced by a model trained
without natural images. Here, we deeply consider pre-training without natu-
ral images. In order to replace the models pre-trained with natural images, we
attempt to find a method for automatically generating images. Automatically
generating a large-scale labeled image dataset is challenging, however, a model
pre-trained without natural images makes it possible to solve problems related
to privacy, copyright, and ethics, as well as issues related to the cost of image
collection and labeling.

Unlike a synthetic image dataset, could we automatically make image pat-
terns and their labels with image projection from a mathematical formula? Re-
garding synthetic datasets, the SURREAL dataset [6] has successfully made
training samples of estimating human poses with human-based motion capture
(mocap) and background. In contrast, our Formula-driven Supervised Learning
and the generated formula-driven image dataset has a great potential to auto-
matically generate an image pattern and a label. For example, we consider using
fractals, a sophisticated natural formula [7]. Generated fractals can differ dras-
tically with a slight change in the parameters, and can often be distinguished in
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the real-world. Most natural objects appear to be composed of complex patterns,
but fractals allow us to understand and reproduce these patterns.

We believe that the concept of pre-training without natural images can sim-
plify large-scale DB construction with formula-driven image projection in or-
der to efficiently use a pre-trained model. Therefore, the formula-driven image
dataset that includes automatically generated image patterns and labels helps
to efficiently solve some of the current issues involved in using a CNN, namely,
large-scale image database construction without human annotation and image
downloading. Basically, the dataset construction does not rely on any natural
images (e.g. ImageNet [1] or Places [2]) or closely resembling synthetic images
(e.g., SURREAL [6]). The present paper makes the following contributions.

The concept of pre-training without natural images provides a method by
which to automatically generate a large-scale image dataset complete with image
patterns and their labels. In order to construct such a database, through explo-
ration research, we experimentally disclose ways to automatically generate cate-
gories using fractals. The present paper proposes two sets of randomly searched
fractal databases generated in such a manner: FractalDB-1k/10k, which consists
of 1,000/10,000 categories (see the supplementary material for all FractalDB-
1k categories). See Figure 1(a) for Formula-driven Supervised Learning from
categories of FractalDB-1k. Regarding the proposed database, the FractalDB
pre-trained model outperforms some models pre-trained by human annotated
datasets (see Table 6 for details). Furthermore, Figure 1(b) shows that Frac-
talDB pre-training accelerated the convergence speed, which was much better
than training from scratch and similar to ImageNet pre-training.

2 Related work

Pre-training on Large-scale Datasets. A number of large-scale datasets have
been released for exploring how to extract an image representation, e.g., im-
age classification [1,2], object detection [8,9,10], and video classification [11,12].
These datasets have contributed to improving the accuracy of DNNs when used
as (pre-)training. Historically, in multiple aspects of evaluation, the ImageNet
pre-trained model has been proved to be strong in transfer learning [13,14,15].
Moreover, several larger-scale datasets have been proposed, e.g., JFT-300M [16]
and IG-3.5B [17], for further improving the pre-training performance.

We are simply motivated to find a method to automatically generate a pre-
training dataset without any natural images for acquiring a learning represen-
tation on image datasets. We believe that the proposed concept of pre-training
without natural images will surpass the methods mentioned above in terms of
fairness, privacy-violated, and ethics-related labels, in addition to the burdens
of human annotation and image download.

Learning Frameworks. Supervised learning with well-studied architec-
tures is currently the most promising framework for obtaining strong image
representations [18,19,20,21,22,23,24,25]. Recently, the research community has
been considering how to decrease the volume of labeled data with {un, weak,
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self}-supervised learning in order to avoid human labeling. In particular, self-
supervised learning can be used to create a pre-trained model in a cost-efficient
manner by using obvious labels. The idea is to make a simple but suitable task,
called a pre-text task [26,27,28,29,30,31]. Though the early approaches (e.g.,
jigsaw puzzle [27], image rotation [31], and colorization [29]) were far from an
alternative to human annotation, the more recent approaches (e.g., DeepClus-
ter [32], MoCo [33], and SimCLR [34]) are becoming closer to a human-based
supervision like ImageNet.

The proposed framework is complementary to these studies because the above
learning frameworks focus on how to represent a natural image based on an exist-
ing dataset. Unlike these studies, the proposed framework enables the generation
of new image patterns based on a mathematical formula in addition to training
labels. The SSL framework can replace the manual labeling supervised by hu-
man knowledge, however, there still exists the burdens of image downloading,
privacy violations and unfair outputs.

Mathematical formula for image projection. One of the best-known
formula-driven image projections is fractals. Fractal theory has been discussed
in a long period (e.g., [7,35,36]). Fractal theory has been applied to rendering a
graphical pattern in a simple equation [37,38,39] and constructing visual recog-
nition models [40,41,42,43]. Although a rendered fractal pattern loses its infinite
potential for representation by projection to a 2D-surface, a human can recognize
the rendered fractal patterns as natural objects.

Since the success of these studies relies on the fractal geometry of naturally
occurring phenomena [7,44], our assumption that fractals can assist learning
image representations for recognizing natural scenes and objects is supported.
Other methods, namely, the Bezier curve [45] and Perlin noise [46], have also
been discussed in terms of computational rendering. We also implement and
compare these methods in the experimental section (see Table 9).

3 Automatically generated large-scale dataset

Figure 2 presents an overview of the Fractal DataBase (FractalDB), which con-
sists of an infinite number of pairs of fractal images I and their fractal categories
c with iterated function system (IFS) [37]. We chose fractal geometry because
the function enables to render complex patterns with a simple equation that are
closely related to natural objects. All fractal categories are randomly searched
(see Figure 1(a)), and the intra-category instances are expansively generated by
considering category configurations such as rotation and patch. (The augmenta-
tion is shown as θ → θ

′
in Figure 2.)

In order to make a pre-trained CNN model, the FractalDB is applied to each
training of the parameter optimization as follows. (i) Fractal images with paired
labels are randomly sampled by a mini batch B = {(Ij , cj)}bj=1. (ii) Calculate
the gradient of B to reduce the loss. (iii) Update the parameters. Note that we
replace the pre-training step, such as the ImageNet pre-trained model. We also
conduct the fine-tuning step as well as plain transfer learning (e.g., ImageNet
pre-training and CIFAR-10 fine-tuning).
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Fig. 2. Overview of the proposed framework. Generating FractalDB: Pairs of an im-
age Ij and its fractal category cj are generated without human labeling and image
downloading. Application to transfer learning: A FractalDB pre-trained convolutional
network is assigned to conduct transfer learning for other datasets.

3.1 Fractal image generation

In order to construct fractals, we use IFS [37]. In fractal analysis, an IFS is
defined on a complete metric space X by

IFS = {X ;w1, w2, · · · , wN ; p1, p2, · · · , pN}, (1)

where wi : X → X are transformation functions, pi are probabilities having the
sum of 1, and N is the number of transformations.

Using the IFS, a fractal S = {xt}∞t=0 ∈ X is constructed by the random
iteration algorithm [37], which repeats the following two steps for t = 0, 1, 2, · · ·
from an initial point x0. (i) Select a transformation w∗ from {w1, · · · , wN} with
pre-defined probabilities pi = p(w∗ = wi) to determine the i-th transformation.
(ii) Produce a new point xt+1 = w∗(xt).

Since the focus herein is on representation learning for image recognition,
we construct fractals in the 2D Euclidean space X = R2. In this case, each
transformation is assumed in practice to be an affine transformation [37], which
has a set of six parameters θi = (ai, bi, ci, di, ei, fi) for rotation and shifting:

wi(x; θi) =

[
ai bi
ci di

]
x +

[
ei
fi

]
. (2)

An image representation of the fractal S is obtained by drawing dots on a black
background. The details of this step with its adaptable parameters is explained
in Section 3.3.

3.2 Fractal categories

Undoubtedly, automatically generating categories for pre-training of image clas-
sification is a challenging task. Here, we associate the categories with fractal
parameters a–f . As shown in the experimental section, we successfully gener-
ate a number of pre-trained categories on FractalDB (see Figure 5) through
formula-driven image projection by an IFS.
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Fig. 3. Intra-category augmentation of a leaf fractal. Here, ai, bi, ci, and di are for
rotation, and ei and fi are for shifting.

Since an IFS is characterized by a set of parameters and their corresponding
probabilities, i.e., Θ = {(θi, pi)}Ni=1, we assume that a fractal category has a fixed
Θ and propose 1,000 or 10,000 randomly searched fractal categories (FractalDB-
1k/10k). The reason for 1,000 categories is closely related to the experimental
result for various #categories in Figure 4.

FractalDB-1k/10k consists of 1,000/10,000 different fractals (examples
shown in Figure 1(a)), the parameters of which are automatically generated
by repeating the following procedure. First, N is sampled from a discrete uni-
form distribution, N = {2, 3, 4, 5, 6, 7, 8}. Second, the parameter θi for the affine
transformation is sampled from the uniform distribution on [−1, 1]6 for i =

1, 2, · · · , N . Third, pi is set to pi = (detAi)/(
∑N

i=1 detAi) whereAi = (ai, bi; ci, di)
is a rotation matrix of the affine transformation. Finally, Θi = {(θi, pi)}Ni=1 is
accepted as a new category if the filling rate r of the representative image of
its fractal S is investigated in the experiment (see Table 2). The filling rate r is
calculated as the number of pixels of the fractal with respect to the total number
of pixels of the image.

3.3 Adaptable parameters for FractalDB

As described in the experimental section, we investigated the several parameters
related to fractal parameters and image rendering. The types of parameters are
listed as follows.
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(a) CIFAR10 (b) CIFAR100 (c) ImageNet100 (d) Places30

Fig. 4. Effects of #category and #instance on the CIFAR-10/100, ImageNet100 and
Places30 datasets. The other parameter is fixed at 1,000, e.g. #Category is fixed at
1,000 when #Instance changed by {16, 32, 64, 128, 256, 512, 1,000}.

#category and #instance. We believe that the effects of #instance on
intra-category are the most effective in the pre-training task. First, we change
the two parameters from 16 to 1,000 as {16, 32, 64, 128, 256, 512, 1,000}.

Patch vs. Point. We apply a 3×3 patch filter to generate fractal images in
addition to the rendering at each 1×1 point. The patch filter makes variation in
the pre-training phase. We repeat the following process t times. We set a pixel
(u, v), and then a random dot(s) with a 3×3 patch is inserted in the sampled
area.

Filling rate r. We set the filling rate from 0.05 (5%) to 0.25 (25% at 5%
intervals, namely, {0.05, 0.10, 0.15, 0.20, 0.25}. Note that we could not get any
randomized category at a filling rate of over 30%.

Weight of intra-category fractals (w). In order to generate an intra-
category image, the parameters for an image representation are varied. Intra-
category images are generated by changing one of the parameters ai, bi, ci, di,
and ei, fi with weighting parameter w. The basic parameter is from ×0.8 to
×1.2 at intervals of 0.1, i.e., {0.8, 0.9, 1.0, 1.1, 1.2}). Figure 3 shows an example
of the intra-category variation in fractal images. We believe that various intra-
category images help to improve the representation for image recognition.

#Dot (t) and image size (W , H). We vary the parameters t as {100K,
200K, 400K, 800K} and (W and H) as {256, 362, 512, 764, 1024}. The averaged
parameter fixed as the grayscale means that the pixel value is (r, g, b) = (127,
127, 127) (in the case in which the pixel values are 0 to 255).

4 Experiments

In a set of experiments, we investigated the effectiveness of FractalDB and how to
construct categories with the effects of configuration, as mentioned in Section 3.3.
We then quantitatively evaluated and compared the proposed framework with
Supervised Learning (ImageNet-1k and Places365, namely ImageNet [1] and
Places [2] pre-trained models) and Self-supervised Learning (DeepCluster-10k [32])
on several datasets [47,1,2,8,48].

In order to confirm the properties of FractalDB and compare our pre-trained
feature with previous studies, we used the ResNet-50. We simply replaced the
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pre-trained phase with our FractalDB (e.g., FractalDB-1k/10k), without chang-
ing the fine-tuning step. Moreover, in the usage of fine-tuning datasets, we con-
ducted a standard training/validation. Through pre-training and fine-tuning,
we assigned the momentum stochastic gradient descent (SGD) [49] with a value
0.9, a basic batch size of 256, and initial values of the learning rate of 0.01. The
learning rate was multiplied by 0.1 when the learning epoch reached 30 and 60.
Training was performed up to epoch 90. Moreover, the input image size was
cropped by 224× 224 [pixel] from a 256× 256 [pixel] input image.

4.1 Exploration study

In this subsection, we explored the configuration of formula-driven image datasets
regarding Fractal generation by using CIFAR-10/100 (C10, C100), ImageNet-100
(IN100), and Places-30 datasets (P30) datasets (see the supplementary material
for category lists in ImageNet-100 and Places-30). The parameters corresponding
to those mentioned in Section 3.3.

#category and #instance (see Figures 4(a), 4(b), 4(c) and 4(d))→ Here,
the larger values tend to be better. Figure 4 indicates the effects of category
and instance. We investigated the parameters with {16, 32, 64, 128, 256, 512,
1,000} on both properties. At the beginning, a larger parameter in pre-training
tends to improve the accuracy in fine-tuning on all the datasets. With C10/100,
we can see +7.9/+16.0 increases on the performance rate from 16 to 1,000 in
#category. The improvement can be confirmed, but is relatively small for the
#instance per category. The rates are +5.2/+8.9 on C10/100.

Hereafter, we assigned 1,000 [category] × 1,000 [instance] as a basic dataset
size and tried to train 10k categories since the #category parameter is more
effective in improving the performance rates.

Patch vs. point (see Table 1)→ Patch with 3 × 3 [pixel] is better. Table 1
shows the difference between 3×3 patch rendering and 1×1 point rendering. We
can confirm that the 3×3 patch rendering is better for pre-training with 92.1 vs.
87.4 (+4.7) on C10 and 72.0 vs. 66.1 (+5.9) on C100. Moreover, when comparing
random patch pattern at each patch (random) to fixed patch in image rendering
(fix), performance rates increased by {+0.8, +1.6, +1.1, +1.8} on {C10, C100,
IN100, P30}.

Filling rate (see Table 2)→ 0.10 is better, but there is no significant change
with {0.05, 0.10, 0.15}. The top scores for each dataset and the parameter are
92.0, 80.5 and 75.5 with a filling rate of 0.10 on C10, IN100 and P30, respectively.
Based on these results, a filling rate of 0.10 appears to be better.

Weight of intra-category fractals (see Table 3)→ Interval 0.4 is the best.
A larger variance of intra-category tends to perform better in pre-training. Start-
ing from the basic parameter at intervals of 0.1 with {0.8, 0.9, 1.0, 1.1, 1.2} (see
Figure 3), we varied the intervals as 0.1, 0.2, 0.3, 0.4, and 0.5. For the case in
which the interval is 0.5, we set {0.01, 0.5, 1.0, 1.5, 2.0} in order to avoid the
weighting value being set as zero. A higher variance of intra-category tends to
provide higher accuracy. We confirm that the accuracies varied as {92.1, 92.4,
92.4, 92.7, 91.8} on C10, where 0.4 is the highest performance rate (92.7), but
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Table 1. Patch vs. point.
C10 C100 IN100 P30

Point 87.4 66.1 73.9 73.0
Patch (random) 92.1 72.0 78.9 73.2
Patch (fix) 92.9 73.6 80.0 75.0

Table 2. Filling rate.
C10 C100 IN100 P30

.05 91.8 72.4 80.2 74.6

.10 92.0 72.3 80.5 75.5

.15 91.7 71.6 80.2 74.3

.20 91.3 70.8 78.8 74.7

.25 91.1 63.2 72.4 74.1

Table 3. Weights.

C10 C100 IN100 P30

.1 92.1 72.0 78.9 73.2

.2 92.4 72.7 79.2 73.9

.3 92.4 72.6 79.2 74.3

.4 92.7 73.1 79.6 74.9

.5 91.8 72.1 78.9 73.5

Table 4. #Dot.

C10 C100 IN100 P30

100k 91.3 70.8 78.8 74.7
200k 90.9 71.0 79.2 74.8
400k 90.4 70.3 80.0 74.5

Table 5. Image size.

C10 C100 IN100 P30

256 92.9 73.6 80.0 75.0
362 92.2 73.2 80.5 75.1
512 90.9 71.0 79.2 73.0
724 90.8 71.0 79.2 73.0
1024 89.6 68.6 77.5 71.9

0.5 decreases the recognition rate (91.8). We used the weight value with a 0.4
interval, i.e., {0.2, 0.6, 1.0, 1.4, 1.8}.

#Dot (see Table 4)→ We selected 200k by considering the accuracy and
rendering time. The best parameters for each configurations are 100K on C10
(91.3), 200k on C100/P30 (71.0/74.8) and 400k on IN100 (80.0). Although a
larger value is suitable on IN100, a lower value tends to be better on C10,
C100, and P30. For the #dot parameter, 200k is the most balanced in terms of
rendering speed and accuracy.

Image size (see Table 5)→ 256 × 256 or 362 × 362 is better. In terms of
image size, 256×256 [pixel] and 362×362 [pixel] have similar performances, e.g.,
73.6 (256) vs. 73.2 (362) on C100. A larger size, such as 1,024×1,024, is sparse in
the image plane. Therefore, the fractal image projection produces better results
in the cases of 256× 256 [pixel] and 362× 362 [pixel].

Moreover, we have additionally conducted two configurations with grayscale
and color FractalDB. However, the effect of the color property appears not to
be strong in the pre-training phase.

4.2 Comparison to other pre-trained datasets

We compared Scratch from random parameters, Places-30/365 [2], ImageNet-
100/1k (ILSVRC’12) [1], and FractalDB-1k/10k in Table 6. Since our imple-
mentation is not completely the same as a representative learning configuration,
we implemented the framework fairly with the same parameters and compared
the proposed method (FractalDB-1k/10k) with a baseline (Scratch, DeepCluster-
10k, Places-30/365, and ImageNet-100/1k).

The proposed FractalDB pre-trained model recorded several good perfor-
mance rates. We respectively describe them by comparing our Formula-driven
Supervised Learning with Scratch, Self-supervised and Supervised Learning.

Comparison to training from scratch. The FractalDB-1k/10k pre-trained
models recorded much higher accuracies than models trained from scratch on rel-
atively small-scale datasets (C10/100, VOC12 and OG). In case of fine-tuning
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Table 6. Classification accuracies of the Ours (FractalDB-1k/10k), Scratch,
DeepCluster-10k (DC-10k), ImageNet-100/1k and Places-30/365 pre-trained models
on representative pre-training datasets. We show the types of pre-trained image (Pre-
train Img; which includes {Natural Image (Natural), Formula-driven Image (For-
mula)}) and Supervision types (Type; which includes {Self-supervision, Supervision,
Formula-supervision}). We employed CIFAR-10 (C10), CIFAR-100 (C100), ImageNet-
1k (IN1k), Places-365 (P365), classfication set of Pascal VOC 2012 (VOC12) and Om-
niglot (OG) datasets. The bold and underlined values show the best scores, and
bold values indicate the second best scores.

Method Pre-train Img Type C10 C100 IN1k P365 VOC12 OG

Scratch – – 87.6 62.7 76.1 49.9 58.9 1.1
DC-10k Natural Self-supervision 89.9 66.9 66.2 51.5 67.5 15.2
Places-30 Natural Supervision 90.1 67.8 69.1 – 69.5 6.4
Places-365 Natural Supervision 94.2 76.9 71.4 – 78.6 10.5
ImageNet-100 Natural Supervision 91.3 70.6 – 49.7 72.0 12.3
ImageNet-1k Natural Supervision 96.8 84.6 – 50.3 85.8 17.5

FractalDB-1k Formula Formula-supervision 93.4 75.7 70.3 49.5 58.9 20.9
FractalDB-10k Formula Formula-supervision 94.1 77.3 71.5 50.8 73.6 29.2

on large-scale datasets (ImageNet/Places365), the effect of pre-training was rel-
atively small. However, in fine-tuning on Places 365, the FractalDB-10k pre-
trained model helped to improve the performance rate which was also higher
than ImageNet-1k pre-training (FractalDB-10k 50.8 vs. ImageNet-1k 50.3).

Comparison to Self-supervised Learning. We assigned the DeepCluster-
10k [32] to compare the automatically generated image categories. The 10k in-
dicates the pre-training with 10k categories. We believe that the auto-annotation
with DeepCluster is the most similar method to our formula-driven image dataset.
The DeepCluster-10k also assigns the same category to images that has simi-
lar image patterns based on K-means clustering. Our FractalDB-1k/10k pre-
trained models outperformed the DeepCluster-10k on five different datasets,
e.g., FractalDB-10k 94.1 vs. DeepCluster 89.9 (C10), 77.3 vs. DeepCluster-10k
66.9 (C100). Our method is better than the DeepCluster-10k which is a self-
supervised learning method to train a feature representation in image recogni-
tion.

Comparison to Supervised Learning. We compared four types of super-
vised pre-training (e.g., ImageNet-1k and Places-365 datasets and their limited
categories ImageNet-100 and Places-30 datasets). ImageNet-100 and Places-30
are subsets of ImageNet-1k and Places-365. The numbers correspond to the num-
ber of categories. At the beginning, our FractalDB-10k surpassed the ImageNet-
100/Places-30 pre-trained models at all fine-tuning datasets. The results show
that our framework is more effective than the pre-training with subsets from
ImageNet-1k and Places365.

We compare the supervised pre-training methods which are the most promis-
ing pre-training approach ever. Although our FractalDB-1k/10k cannot beat
them at all settings, our method partially outperformed the ImageNet-1k pre-
trained model on Places-365 (FractalDB-10k 50.8 vs. ImageNet-1k 50.3) and
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Fig. 5. Noise and accuracy

Table 7. The classification accuracies of the
FractalDB-1k/10k (F1k/F10k) and DeepCluster-10k
(DC-10k). Mtd/PT Img means Method and Pre-
trained images.

Mtd PT Img C10 C100 IN1k P365 VOC12 OG

DC-10k Natural 89.9 66.9 66.2 51.2 67.5 15.2
DC-10k Formula 83.1 57.0 65.3 53.4 60.4 15.3

F1k Formula 93.4 75.7 70.3 49.5 58.9 20.9
F10k Formula 94.1 77.3 71.5 50.8 73.6 29.2

Omniglot (FractalDB-10k 29.2 vs. ImageNet-1k 17.5) and Places-365 pre-trained
model on CIFAR-100 (FractalDB-10k 77.3 vs. Places-365 76.9) and ImageNet
(FractalDB-10k 71.5 vs. Places-365 71.4). The ImageNet-1k pre-trained model
is much better than our proposed method on fine-tuning datasets such as C100
and VOC12 since these datasets contain similar categories such as animals and
tools.

4.3 Additional experiments

We also validated the proposed framework in terms of (i) category assignment,
(ii) convergence speed, (iii) freezing parameters in fine-tuning, (iv) comparison
to other formula-driven image datasets, (v) recognized category analysis and (vi)
visualization of first convolutional filters and attention maps.

(i) Category assignment (see Figure 5 and Table 7). At the beginning,
we validated whether the optimization can be successfully performed using the
proposed FractalDB. Figure 5 show the transitioned pre-training accuracies with
several rates of label noise. We randomly replaced the category labels. Here, 0%
and 100% noise indicate normal training and fully randomized training, respec-
tively. According to the results on FractalDB-1k, a CNN model can successfully
classify fractal images, which are defined by iterated functions. Moreover, well-
defined categories with a balanced pixel rate allow optimization on FractalDB.
When fully randomized labels were assigned in FractalDB training, the architec-
ture could not correct any images and the loss value was static (the accuracies
are 0% at almost times). According to the result, we confirmed that the effect
of the fractal category is reliable enough to train the image patterns.

Moreover, we used the DeepCluster-10k to automatically assign categories to
the FractalDB. Table 7 indicates the comparison between category assignment
with DeepCluster-10k (k-means) and FractalDB-1k/10k (IFS). We confirm that
the DeepCluster-10k cannot successfully assign a category to fractal images.
The gaps between IFS and k-means assignments are {11.0, 20.3, 13.2} on {C10,
C100, VOC12}. This obviously indicates that our formula-driven image genera-
tion through the principle of IFS and the parameters in equation (2) works well
compared to the DeepCluster-10k.
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Table 8. Freezing parameters.

Freezing layer(s) C10 C100 IN100 P30

Fine-tuning 93.4 75.7 82.7 75.9

Conv1 92.3 72.2 77.9 74.3
Conv1–2 92.0 72.0 77.5 72.9
Conv1–3 89.3 68.0 71.0 68.5
Conv1–4 82.7 56.2 55.0 58.3
Conv1–5 49.4 24.7 21.2 31.4

Table 9. Other formula-driven image
datasets with a Bezier curve and Perlin noise.

Pre-training C10 C100 IN100 P30

Scratch 87.6 60.6 75.3 70.3
Bezier-144 87.6 62.5 72.7 73.5
Bezier-1024 89.7 68.1 73.0 73.6
Perlin-100 90.9 70.2 73.0 73.3
Perlin-1296 90.4 71.1 79.7 74.2

FractalDB-1k 93.4 75.7 82.7 75.9

Table 10. Performance rates in which FractalDB was better than the ImageNet pre-
trained model on C10/C100/IN100/P30 fine-tuning.

Dataset Category(classification%)

C10 –

C100 bee(89), chair(92), keyboard(95), maple tree(72), motor cycle(99),

orchid(92), pine tree(70)

IN100 Kerry blue terrier(88), marmot(92), giant panda(92), television(80),

dough(64), valley(94)

P30 cliff(64), mountain(40), skyscrape(85), tundra(79)

(ii) Convergence speed (see Figure 1(b)). The transitioned pre-training
accuracies values in FractalDB are similar to those of ImageNet pre-trained
model and much faster than scratch from random parameters (Figure 1(b)). We
validated the convergence speed in fine-tuning on C10. As the result of pre-
training with FractalDB-1k, we accelerated the convergence speed in fine-tuning
which is similar to the ImageNet pre-trained model.

(iii) Freezing parameters in fine-tuning (see Table 8). Although full-
parameter fine-tuning is better, conv1 and 2 acquired a highly accurate image
representation (Table 8). Freezing the conv1 layer provided only a -1.4 (92.0
vs. 93.4) or -2.8 (72.9 vs. 75.7) decrease from fine-tuning on C10 and C100,
respectively. Comparing to other results, such as those for conv1–4/5 freezing,
the bottom layer tended to train a better representation.

(iv) Comparison to other formula-driven image datasets (see Ta-
ble 9). At this moment, the proposed FractalDB-1k/10k are better than other
formula-driven image datasets. We assigned Perlin noise [46] and Bezier curve [45]
to generate image patterns and their categories just as FractalDB made the
dataset (see the supplementary material for detailed dataset creation of the
Bezier curve and Perlin noise). We confirmed that Perlin noise and the Bezier
curve are also beneficial in making a pre-trained model that achieved better
rates than scratch training. However, the proposed FractalDB is better than
these approaches (Table 9). For a fairer comparison, we cite a similar #category
in the formula-driven image datasets, namely FractalDB-1k (total #image: 1M),
Bezier-1024 (1.024M) and Perlin-1296 (1.296M). The significantly improved rates
are +3.0 (FractalDB-1k 93.4 vs. Perlin-1296 90.4) on C10, +4.6 (FractalDB-10k
75.7 vs. Perlin-1296 71.1) on C100, +3.0 (FractalDB-1k 82.7 vs. Perlin-1296 79.7)
on IN100, and +1.7 (FractalDB-1k 75.9 vs. Perlin-1296 74.2) on P30.



Pre-training without Natural Images 13

(a) ImageNet (b) Places365 (c) Fractal-1K (d) Fractal-10K (e) DC-10k

(f) Heatmaps with Grad-CAM. (Left) Input image. (Center-left) Activated heatmaps
with ImageNet-1k pre-trained ResNet-50. (Center) Activated heatmaps with
Places-365 pre-trained ResNet-50. (Center-Right, Right) Activated heatmaps with
FractalDB-1K/10k pre-trained ResNet-50.

Fig. 6. Visualization results: (a)–(e) show the activation of the 1st convolutional layer
on ResNet-50, and (f) illustrates attentions with Grad-CAM [50].

(v) Recognized category analysis (see Table 10). We investigated
Which categories are better recognized by the FractalDB pre-trained model com-
pared to the ImageNet pre-trained model. Table 10 shows the category names
and the classification rates. The FractalDB pre-trained model tends to be better
when an image contains recursive patterns (e.g., a keyboard, maple trees).

(vi) Visualization of first convolutional filters (see Figures 6(a–e))
and attention maps (see Figure 6(f)). We visualized first convolutional
filters and Grad-CAM [50] with pre-trained ResNet-50. As seen in ImageNet-
1k/Places-365/DeepCluster-10k (Figures 6(a), 6(b) and 6(e)) and FractalDB-
1k/10k pre-training (Figures 6(c) and 6(d)), our pre-trained models obviously
generate different feature representations from conventional natural image datasets.
Based on the experimental results, we confirmed that the proposed FractalDB
successfully pre-trained a CNN model without any natural images even though
the convolutional basis filters are different from the natural image pre-training
with ImageNet-1k/DeepCluster-10k.

The pre-trained models with Grad-CAM can generate heatmaps fine-tuned
on C10 dataset. According to the center-right and right in Figure 6(f), the
FractalDB-1k/10k also look at the objects.
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5 Discussion and Conclusion

We achieved the framework of pre-training without natural images through formula-
driven image projection based on fractals. We successfully pre-trained models on
FractalDB and fine-tuned the models on several representative datasets, includ-
ing CIFAR-10/100, ImageNet, Places and Pascal VOC. The performance rates
were higher than those of models trained from scratch and some supervised/self-
supervised learning methods. Here, we summarize our observations through ex-
ploration as follows.

Towards a better pre-trained dataset. The proposed FractalDB pre-
trained model partially outperformed ImageNet-1k/Places365 pre-trained mod-
els, e.g., FractalDB-10k 77.3 vs. Places-365 76.9 on CIFAR-100, FractalDB-10k
50.8 vs. ImageNet-1k 50.3 on Places-365. If we could improve the transfer accu-
racy of the pre-training without natural images, then the ImageNet dataset and
the pre-trained model may be replaced so as to protect fairness, preserve pri-
vacy, and decrease annotation labor. Recently, for examples, 80M Tiny Images5

and ImageNet (human-related categories)6 have been withdrawn the publicly
available images.

Are fractals a good rendering formula? We are looking for better mathe-
matically generated image patterns and their categories. We confirmed that Frac-
talDB is better than datasets based on the Bezier curve and Perlin Noise in the
context of pre-trained model (see Table 9). Moreover, the proposed FractalDB
can generate a good set of categories, e.g., the fact that the training accuracy
decreased depending on the label noise (see Figures 5) and the formula-driven
image generation is better than DeepCluster-10k in the most cases, as a method
for category assignment (see Table 7) show how the fractal categories worked
well.

A different image representation from human annotated datasets.
The visual patterns pre-trained by FractalDB acquire a unique feature in a dif-
ferent way from ImageNet-1k (see Figure 6). In the future, steerable pre-training
may be available depending on the fine-tuning task. Through our experiments,
we confirm that a pre-trained dataset configuration should be adjusted. We hope
that the proposed pre-training framework will suit a broader range of tasks, e.g.,
object detection and semantic segmentation, and will become a flexibly gener-
ated pre-training dataset.
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