
Pre-training without Natural Images
–Supplementary Material–

Hirokatsu Kataoka1, Kazushige Okayasu1,2, Asato Matsumoto1,3, Eisuke
Yamagata4, Ryosuke Yamada1,2, Nakamasa Inoue4,

Akio Nakamura2, and Yutaka Satoh1,3

1 National Institute of Advanced Industrial Science and Technology (AIST)
2 Tokyo Denki University
3 University of Tsukuba

4 Tokyo Institute of Technology

Abstract. The document is supplementary material of Pre-training with-
out Natural Images.

1 All categories in FractalDB-1k

Figure 1 show all categories in FractalDB-1k.

Fig. 1. All categories in FractalDB-1k dataset. In the figure, we list 1,000 fractal cat-
egories which are rendered by Iterated Function Systems (IFS). Surprisingly, a CNN
architecture classify the kind of image patterns with close to 100% in a training time.

2 Detailed categories in ImageNet-100 (IN100) and
Places-30 datasets (P30)

Table 1 and 2 indicate detailed categories used in IN100 and P30, respectively.
The both datasets are used in the main paper.



2 H. Kataoka et al.

Table 1. Categories in ImageNet-100.

n01560419 n01860187 n02058221 n02169497 n02655020 n02823750 n03146219 n03344393
n03483316 n03891332 n04141975 n04404412 n07860988 n01630670 n01910747 n02090622
n02356798 n02667093 n02835271 n03201208 n03372029 n03485794 n03938244 n04152593
n04442312 n09246464 n01632458 n01985128 n02093859 n02361337 n02727426 n02894605
n03207743 n03388549 n03495258 n03954731 n04254680 n04456115 n09468604 n01632777
n02002724 n02096437 n02422699 n02797295 n02930766 n03208938 n03394916 n03770439
n03956157 n04259630 n04525038 n15075141 n01694178 n02011460 n02099712 n02445715
n02802426 n02948072 n03240683 n03404251 n03770679 n03958227 n04346328 n06874185
n01728920 n02017213 n02106662 n02494079 n02804414 n03028079 n03255030 n03443371
n03777754 n03980874 n04355933 n07248320 n01776313 n02018795 n02112137 n02510455
n02804610 n03062245 n03272010 n03447447 n03874293 n04074963 n04366367 n07717410
n01833805 n02051845 n02113712 n02607072 n02808304 n03126707 n03325584 n03481172
n03876231 n04118538 n04399382 n07730033

Table 2. Categories in Places-30.

amphitheater cliff food court kennel outdoor park
beauty salon creek grotto manufactured home promenade

boat deck escalator indoor harbor medina restaurant patio
bowling alley flea market indoor heliport motel roof garden
butchers shop florist shop indoor industrial area mountain server room

sky skyscraper tundra valley volcano

3 Formula-driven Image Projections

3.1 Perlin Noise

Perlin Noise is a widely used method for generating textures in computer graph-
ics. Just like Fractals, it is formula driven and is capable of constructing a
database without human annotation. It matches the concept of Pre-training
without Natural Images, and thus we implemented a PerlinDB in comparison to
the FractalDB.

Generating Perlin Noise can be divided into three steps: definition of a 2D-
grid, calculation based on an argument point, and interpolation. First, a 2D-grid
is defined with a random gradient vector given at each grid point. Next, the
value of each argument point is computed by a dot product between gradient
vectors at the four corners of the cell the point belongs to, and distance vectors
between the argument point and the corresponding grid points. Finally, through
an interpolation between the four values computed at step 2, the final value of
the argument point is determined. Through this simple process, Perlin Noise can
be generated.

The interval gradient vectors are defined affects the complexity of the gen-
erated noise. For example, compared to a noise computed from a grid with a
gradient vector at every grid point, a noise computed from a grid with a gra-
dient vector at every two grid points will be rougher in terms of complexity



Pre-training without Natural Images 3

(a) Perlin 1 (b) Perlin 3 (c) Perlin 9

Fig. 2. Example images of Perlin noise

(a) Bezier 3 (b) Bezier 10 (c) Bezier 25

Fig. 3. Example images of Bezier curve

of the noise. In the implementation of the PerlinDB, we used this difference in
complexity to generate categories. For example, in the Perlin 100 dataset, we
defined a 1024*1024 grid with gradient vectors210−ngrid points vertically and
210−m grid points horizontally (n,m = 1, 2, ..., 10), which makes category n m.
As a result, we managed to create 100 categories: 01 01, 01 02, ... , 10 09, 10 10.
01 01 is the category with the roughest noises, whereas 10 10 is the one with the
most detailed noises.

As for the instances within each of the categories, we changed the gradient
vectors. The angles that the gradient vectors are defined at each grid point are
determined randomly. Therefore, redefining the gradient vectors would result in
different gradient vectors, and thus a different noise. Using this simple method,
Perlin 100cat is made of 10,000 instances per category.

Comparing several datasets, Perlin 100, Perlin 324, Perlin 1296, it seemed
that the more categories there are, the better the accuracy is. Also, between
datasets with the same number of categories but with different number of in-
stances, datasets with more instances performed better. This tendency is the
same as that of FractalDB.



4 H. Kataoka et al.

3.2 Bezier Curve

Just like PerlinDB, we also implemented a BezierCurveDB in comparison to
the FractalDB. The BezierCurveDB consistes of images of Bezier Curve. It is
a method for generating smooth curves in computer graphics. Bezier Curve is
also formula driven and is capable of constructing a dataset without human
annotation.

Bezier Curves is n−1-dimensional curves generated from n points. De Castel-
jau’s algorithm is a widely used method for drawing the curves. Bezier Curves
is generated by the following procedure:

1. Plot n dots
2. Form lines between thoes dots.
3. Plot dots dividing each of lines int to t : 1 − t
4. Repeat (2) to (3) until only one dot is left

We implemented a BezierCurveDB for pre-training, and describe the dataset
categories and instances. Note that generating images have a curve and lines
formed to render the curves. The image categories is defined by a pair of n and
s. The n is a number of dots plotting first in generating Bezier Curves. The s
is a number of steps of dividing lines, in othe words, s is a number how many
a line is divided epually. For example, in the Bezier 1024 dataset, we difined
category n s by combining 32 numbers (n,s = 3, 4, ..., 33, 34). As a result, we
create 1024 categories: 03 03, 03 04, 03 05, ..., 34 32, 34 33, 34 34. 03 03 is the
category of 2D curves generated with dividing lines into 3 equal parts. Next,
as for the instances within each of the categories, we changed the place of first
dots. By plotting dots randomly, BezierCurveDB is made of 1,000 instances per
category.

We compared several datasets and BezierCurveDB (Bezier 144 and Bezier 1024)
like PerlinDB. As a result, it found that BezierCurveDB has the same tendency
as FractalDB and PerlinDB. The tendency is that the more the number of cat-
egories or instances, the higher the accuracy is.


	Pre-training without Natural Images–Supplementary Material–

