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Abstract— The paper presents a pedestrian near-miss de-
tector with temporal analysis that provides both pedestrian
detection and risk-level predictions which are demonstrated
on a self-collected database. Our work makes three primary
contributions: (i) The framework of pedestrian near-miss de-
tection is proposed by providing both a pedestrian detection and
risk-level assignment. Specifically, we have created a Pedestrian
Near-Miss (PNM) dataset that categorizes traffic near-miss
incidents based on their risk levels (high-, low-, and no-risk).
Unlike existing databases, our dataset also includes manually
localized pedestrian labels as well as a large number of incident-
related videos. (ii) Single-Shot MultiBox Detector with Motion
Representation (SSD-MR) is implemented to effectively extract
motion-based features in a detected pedestrian. (iii) Using the
self-collected PNM dataset and SSD-MR, our proposed method
achieved +19.38% (on risk-level prediction) and +13.00% (on
joint pedestrian detection and risk-level prediction) higher
scores than that of the baseline SSD and LSTM. Additionally,
the running time of our system is over 50 fps on a graphics
processing unit (GPU).

I. INTRODUCTION

To improve self-driving performance with a driving
recorder, appropriate spatiotemporal understanding is re-
quired in addition to object detection. Herein, we focus on
pedestrian detection and movement analysis for an advanced
safety system.

Representative databases for traffic system and au-
tonomous driving such as the KITTI [1] dataset and
CityScapes [2], have increased in scale over the past decade.
Unfortunately, they do not contain any traffic near-miss inci-
dents (A traffic near-miss incident is defined as an event in
which an accident is avoided through evasive driving action
such as braking and steering [3]). The analysis of near-miss
incident videos is still challenging because most existing
pedestrian detection methods cannot determine whether or
not a situation is dangerous. For instance, Figure 1 shows
both normal (without any danger) and near-miss incident
scenes, in which the vehicle-mounted drive recorders capture
pedestrians. However, recent detection approaches often have
difficulty identifying pedestrians in rapid motion because
they have visual features, such as movement and posture,
that are different from those of normal pedestrians. Moreover,
recent object detectors cannot directly understand impending
dangers in incident/accident scenes. Therefore, a pedestrian
dataset that contains near-miss incidents and pedestrian lo-
cations would provide us with increased opportunities to
recognize dangerous scenes in safety systems. However, the
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Fig. 1. Normal (left) and near-miss incident (right) scenes on public roads.
We believe that conventional pedestrian detection methods are unsuitable
for detecting near-miss incidents because the two scenes include differences
such as movement and pedestrian posture. The related work [3], [4] actually
separates various driving scenes into near-misses and backgrounds to detect
dangerous situations. Therefore, it was necessary to collect a database
and construct an approach that would allow joint analysis of motion
representation and pedestrian detection.

collection of pedestrian near-miss incidents is inevitably a
very difficult task due to (i) the rarity in traffic scenes,
and (ii) the region of a video capture involving a potential
pedestrian incident being relatively small. The challenging
problem must be conducted in order to avoid such a traffic
near-miss incident.

In this paper, we propose a novel framework called the
Single-Shot MultiBox Detector with Motion Representation
(SSD-MR) for joint pedestrian detection and risk-level pre-
diction in traffic safety systems, including self-driving cars.
Our goal is to predict pedestrian risk levels (high-/low-/no-
risk) as well as perform localization with a vehicle-mounted
driving recorder.

We summarize our contributions as follows:
Conceptual contribution: Since we believe that the anal-

ysis of various near-miss incidents is useful for avoiding
risks, we have collected a new traffic database consisting
of pedestrian near-miss incidents. This Pedestrian Near-Miss
dataset (PNM dataset) is used to complete the joint task of
pedestrian risk-level prediction (high-, low-, and no-risk) and
pedestrian detection enables the simultaneous output of a
pedestrian bounding box (bbox) and risk level.

Technical contribution: We also propose SSD [5] with
motion representation (SSD-MR) as a concept of motion-
representation-by-detection. SSD-MR processes the spa-
tiotemporal vectors of each detected pedestrian with dilated
convolution [6] and then uses that information to predict a
risk level. Though the self-collected PNM dataset contains a
lot of blurry images and cluttered backgrounds by vehicle-
mounted driving recorders, SSD-MR overcomes the difficul-
ties through the joint training with pedestrian detection and
risk-level prediction.



Experimental contribution: Our results clearly show the
effectiveness of our approach when used in conjunction
with SSD-MR and our self-collected PNM dataset. The
data collection and sophisticated modeling of our proposed
approach enable us to decisively detect the most at-risk
pedestrian and the incident risk level.

II. RELATED WORK

Pedestrian detection. Since the deep neural networks
(DNN) burst into public view in 2012 when AlexNet with
ImageNet [7], [8], [9], various approaches have been pro-
posed in the computer vision field and the region-based
convolutional neural networks (R-CNN) [10] has become
a critical algorithm in the object recognition field, while
the search for a de-facto-standard object detection process
has witnessed numerous advancements. The improvements
made to sophisticated algorithms such as the Fast/Faster R-
CNN [11], [12] have facilitated progress toward real-time ob-
ject detection and researchers have proposed adjustments to
make them more suitable for pedestrian detection (e.g.[13].
As a result, one-shot algorithms such as SSD [5] and you
only look once (YOLO) [14], [15] now provide faster ways
to detect many types of object.

The use of representative object detection algorithms has
facilitated pedestrian detection [16], [17]. However, since
pedestrian detection algorithms currently lack the motion
representation required to understand more of the detailed
information available in driving recorder videos, we have ex-
tended our detection algorithm to allow risk-level predictions
using a space-time feature.

Temporal analysis. Dense trajectories (DT) and improved
DT (IDT) models [18], [19] have been employed in video
analysis. To represent a sophisticated motion vector, the
DT model densely captures optical flows and combines
HOG [20], HOF [21] and MBH [22] feature vectors. In
the DNN era, several three-dimensional (3D) convolutional
networks have been proposed by Ji et al. [23] and Tran
et al. [24]. First, Ji et al. proposed a 3D-CNN model
created from the input of multiple frames that could process
spatiotemporal maps from various channels like gray, gradi-
ent, and optical flow. Meanwhile, Tran et al. presented the
concept of 3D convolutional networks (C3D) as a means to
directly capture a spatiotemporal representation in an image
sequence. The C3D model employs a 3D convolutional ker-
nel on xyt space obtained using only red-green-blue (RGB)
sequences. Recently, a two-dimensional (2D)-based temporal
model with a CNN known as a two-stream CNN [25] has
proved to be a successful approach to action recognition. This
model utilizes two CNN models, one of which is trained
with stacked flow images while the other is trained with
sequential RGB images. In the stacked flow images, dense
optical flows are projected into a 2D image at each x− and
y−direction. Surprisingly, the two-stream CNNs outperforms
the C3D model on representative human action datasets such
as UCF101 [26] and HMDB51 [27] thereby indicating that
2D-kernel performance and two-stream models are suitable
for action recognition on practical datasets. Although more

recent action recognition studies [28], [29] show significant
improvements in 3D-kernels, the data sought after in our
study does not involve action recognition from a video
sharing service. However, while both the DT/IDT and two-
stream CNNs temporal models, as well as the 3D CNN
models, rely heavily on dense optical flows to achieve
accurate recognition rates, the results of our experiments
show that flow-based approaches do not work well on our
PNM dataset because optical flow images contain too much
noise to allow extraction of pedestrian-specific features. To
robustly predict risk levels, we assign an SSD-MR that
extracts temporal activations based on pedestrian detections.
This allows our SSD-MR to effectively analyze sequential
convolutional activations within the detected bbox without
considering optical flows.

Traffic datasets. Efforts aimed at putting self-driving
cars into practical use have included the application of the
KITTI [1] and CityScapes datasets [2] as full-task bench-
marks. Undoubtedly, KITTI is a well-organized benchmark
and there are significant ongoing efforts to update the various
algorithms such as stereo vision, traffic object detection, and
visual odometry to a level sufficient to permit their use in
self-driving cars. On the other hand, CityScapes provides
well-defined semantic labels that can be used to train traffic
scene parsing models. The most important issue in advanced
driver assistance systems (ADASs) and self-driving cars must
always be traffic accident avoidance. However, the above-
mentioned vision-based databases are missing a perspective
of accident/incident database collection. Along this line, the
NTSEL [30], [31] and the Near-miss Incident DataBase
(NIDB) [3], [4] have issued a highly motivated challenge
aimed at achieving a more direct and active understanding
of traffic accidents. Especially, the NIDB contains a large
number of traffic videos captured in real-world situations.
As a result, the database uses task-specific fine-tuning and
semantic information to help us effectively understand inci-
dent scenes.

However, even using the NIDB, pedestrian locations in
traffic incident scenes cannot be specified at a sufficient level
of detail. In contrast, using the PNM dataset, we provide
a large number of bbox annotations in addition to risk-
level labels, which allows us to simultaneously train traffic
risk levels (high-, low-, and no-risk) as well as pedestrian
locations.

III. PEDESTRIAN NEAR-MISS DATASET (PNM DATASET)
A. Dataset summary

In this section, we show the details of the PNM dataset,
which is based on the NIDB [3] (Examples are shown in
Figure 1). Although the collection of such data is very
difficult due to the rarity of incidents in actual traffic scenes,
we have managed to collect a total of 2,880 videos for the
current PNM dataset. Each video consists of 10 - 15 seconds
of footage taken at 30 fps before/after a near-miss incident
at 640×480 [pixel], and each video segment was annotated
with a pedestrian’s risk level {high-, low-, or no-risk} based
on the low/high risk division outlined in III-B. Next, we



Fig. 2. Annotation example: We annotate risk-level {high-, low-, and no-
risk} and bbox with {x, y, w, h} (height (h) and width (w)) at each frame.
To improve annotation quality, the labels are checked by validators.

applied 2,208 of the videos for training and used the other
672 videos for testing. The near-miss incident videos were
obtained by vehicle-mounted driving recorders installed in
more than 100 taxis.

B. Definition of traffic near-miss incident

A traffic near-miss incident is an event in which an
accident is avoided by driving operations such as braking
and steering. Near-miss situations occur more frequently than
collisions.

We evaluated risk levels as low or high based on the
potential for a collision if drivers did not take appropriate
actions such as emergency braking and/or evasive steering
maneuvers. The high- and low-level risk categories corre-
spond to the time-to-collision (TTC) [32]. In the case of a
high-level risk, a driver must react in less than 0.5 s (TTC
< 0.5 s) to avoid a collision. For low-level risks, the TTC
is more than 2.0 s (TTC > 2.0 s). Videos containing mid-
level risk (0.5s ≤ TTC ≤ 2.0s), which appear to show a
mixture of high- and low-level risks, were excluded from
the database. To train a deep CNN, a clear visual distinction
should be made by the PNM dataset. This paper focuses on
high- and low-level risks (without mid-level risk) in order to
clearly divide the degree of risk. Especially in the risk-level
prediction, we automatically divide risk into high or low.
Therefore, human validator only checks the automatically
annotated labels.

C. Collection, annotation, and cross-validation for the
database

Although near-miss videos are difficult to collect, they
are considered necessary for developing autonomous systems
capable of driving safely in traffic. These video recording
systems were triggered if there was sudden braking resulting
in deceleration of more than 0.5 G. Each video was annotated
according to its risk level {high-, low-, or no-risk}, and each
frame was an annotated bbox with the {x, y, w, h} (height (h)
and weight (w)) of the pedestrian in relation to the near-miss
situation. See Figure 2 for examples. When no pedestrian
is in the frame, the bbox does not appear. Of the training
samples utilized, 1,030 videos were annotated as no-risk,
337 as high-risk, and 841 as low-risk. Test samples included
523 no-risk videos, 49 high-risk videos, and 100 low-risk
videos. The number of validation set is following the near-
miss dataset [3]. The other videos are used as training set.

(a) Overall frames (b) First 10 frames (c) Last 10 frames

Fig. 3. Averaged images with movement of bounding boxes. The pixel
values are normalized for best view in color.

(a) Weather (b) Timezone

Fig. 4. Statistics in weather condition and timezone.

To avoid ambiguity and prevent strong bias in our data
annotations, three expert annotators (who have knowledge for
computer vision) trimmed and categorized each video to 30
frames, after which they were assigned to a single category.
Totally, PNM dataset contains 66,240 (2,208 [video] × 30
[frame]) video frames. The dataset was then cross-validated
by the 2 annotators and 2 extra validators. The annotator
and validators thoroughly checked the videos at least once.
Note that the PNM dataset videos were collected from
various vehicles, places on {intersection, city areas, and
major roads}.

D. Dataset statistics

We list dataset statistics in Figure 3 and 4. Figure 3
illustrates the averaged images with movement of bounding
boxes. Moreover, Figure 3(a), 3(b) and 3(c) show overall,
first 10 frames and last 10 frames, respectively. Figure 4
denotes the statistics of weather and timezone. We separated
the weather attribute into sunny, cloudy and rainy (see
Figure 4(a)). Similarly, we divided the timezone into daytime,
dawn-dusk and night (see Figure 4(b)).

IV. PEDESTRIAN RISK ANALYSIS

The process flow of our pedestrian risk analysis system is
shown in Figure 5. Referring to the SSD-MR, we jointly
execute pedestrian detection (section IV-A) and risk-level
prediction (section IV-B). Our strategy aims at predicting a
pedestrian risk-level by analyzing temporal activations from
a detected pedestrian.

A. Pedestrian detection

To extract a temporal activation from a pedestrian area, we
first must detect a pedestrian in a driving recorder video. Our
baseline detector is designed based on the SSD [5], which is
a de-facto-standard detection framework. The detailed SSD-
based architecture is shown in Figure 6. The different point
from the original SSD is to output a temporal activation xT

with 256-dim vector per frame.
Multi-scale voting with different layers. Multi-scale

voting is processed with four different layers (conv4, 6-8) in



Fig. 5. Using our SSD-MR, we detect a pedestrian at each frame in order to extract a temporal activation N -dim for risk level prediction. After obtaining
temporal activations from the T frames, stacked temporal activation (STA) were stacked with T ×N -dim to produce risk-level predictions. The detailed
modified SSD architecture is shown in the next figure.

Fig. 6. Detailed modified SSD architecture. The kernel parameters used in
the SSD are shown as channels×width×height like 256× 3× 3. The first
five convolutional layers follow the Visual Geometry Group (VGG)-16 [33]
architecture. The detailed kernel parameters that result after the 6th layer
(Conv6) are shown in the figure. In Conv9, a temporal activation xT can
be obtained for each frame.

order to output a region proposal at each layer and reliably
detect a pedestrian in each driving recorder video. The multi-
scale voting scores are obtained from Conv4, Conv6, Conv7,
and Conv8 based on the SSD. As shown in Figure 7(a),
voting scores are projected into the region around pedestrian
as a distribution. The final detection result is decided using
confidence scores from the anchor boxes (IoU = 0.5). The
maximum anchor box with the confidence score is the final
detection result. The multi-scale vote detection process is
shown in Figure 7(b).

Feature learning toward risk analysis. In order to obtain
sophisticated temporal activation as a feature vector, we train
our SSD-MR by assigning pedestrian risk-level labels and
obtaining a temporal activation (xT ; the vector corresponds
to the 256-dim vector in Figure 6) based on the output of
Conv9.

Since the SSD-MR is trained with risk-level labels and
bboxes, we can evaluate risk-specified features from the
detected pedestrian. The SSD-MR is trained with a multi-
task loss function as shown below:

L(x, c, l, g, r) =
1

N
(Lconf (x, c) + Lloc(x, l, g)) + Lrisk(r)

(1)

where the first and second terms (Lconf (x, c) +
Lloc(x, l, g))/N make up the loss function based on
the SSD, Lrisk(r) is the softmax cross-entropy loss for risk
prediction, and r is the set of risk-level annotations and the
prediction.

(a) Visualization of multi-scale voting. The confidence
scores obtained from the left input images with four dif-
ferent convolutional layers are shown in the right figures.

(b) The final detection results are decided based on confidence scores.
(Left figure) Votes are cast for four different region proposals. (Right
figure) The maximum confidence score is used as the final detection
result.

Fig. 7. Pedestrian detection with modified SSD.

B. Risk prediction

Pedestrian risk levels are predicted by using temporal
activation in SSD-MR. We define y as the risk label y ∈
{high-, low-, or no-risk} and vi = {vi1, vi2, ..., vit}(i ∈
1, 2, ..., N) as temporal activations. To calculate the condi-
tional probability P (y|v), we can use the temporally stacked
t×256-dim matrix called stacked temporal activation (STA),
which consists of the stacked feature vectors given in the
output of SSD-MR Conv9 (256-dim vector in Figure 6)
in temporal order. We analyze the STA with a temporal
convolution based on dilated convolution [6], which also
allows easy expansion of the receptive field. Our temporal
convolution is shown in Figure 8. If we were to use general



Fig. 8. Temporal convolution with stacked blocks. The kernel size of the
dilated convolution is set to 2.

TABLE I
PEDESTRIAN DETECTION: EVALUATION OF PEDESTRIAN DETECTION

WITH PRECISION AND RECALL

Approach Precision Recall F-measure
3-layer SSD-MR w/o vote .9915 .6782 .8055

w/ vote .9916 .6830 .8089
4-layer SSD-MR w/o vote .9910 .6865 .8111

w/ vote .9911 .7036 .8230

convolution with a kernel size of two, 31 convolution mod-
ules would be required to obtain a receptive field sufficient
to cover the T (=30) frames input. Lrisk(r) with temporal
convolution is trained using softmax cross-entropy.

Next, we consider an evaluation between our SSD-MR
and SSD with Long Short-Term Memory (LSTM) [34] (see
Table III). In the pure comparison, the temporal convolution
has fewer parameters than the LSTM. When the LSTM is
used, the number of parameters is N ×N × 8 (input, input
gate, output gate, and forget gate totally have weights for the
current input and previous output). In contrast, our temporal
convolution has fewer parameters with 2×5×B (#kernel size
× #convolution × #block). Further results and discussions
are provided in the experimental section.

C. Implementation detail

In the detection part of SSD-MR, we use risk level labels
if the annotations on the PNM dataset are high or low. In
the test set, we have 149 videos with annotated risk levels.

In the temporal convolution in SSD-MR, we train with all
training samples and evaluate all test samples.

The both parts were separately optimized, namely we
initially trained the detection part with bbox ground truths
then the temporal representation part (STA) is trained with
the ground truths of risk-level score.

We set the learning rate to 0.001, the momentum to
0.9, and use a weight decay of 0.0005 for the detection
part/0.001 for temporal convolution, and use a stochastic
gradient descent (SGD) optimizer.

V. EXPERIMENT

In the section, we mainly show the recognition and
detection performance for risk-level prediction (high-, low-

Fig. 9. Example of detection results. The blue rectangle is the detection
result and the red rectangle is the ground truth on the detection failure frame.

TABLE II
RISK-LEVEL PREDICTION: COMPARISON OF BLOCK NUMBERS

Approach Ave. Recall (AR) Ave. Precision (AP) Ave. F-score
Block 1 .7417 .7419 .7305
Block 2 .8301 .6774 .6939
Block 3 .7970 .7212 .7437
Block 4 .7985 .6448 .6661
Block 5 .7422 .7464 .7381

and no-risk level) and joint task with pedestrian detection.
However, at the beginning, we confirm how to construct
our SSD model with multiple layers and voting mechanism
because our dataset is different from conventional datasets
like KITTI [1].

A. Pedestrian detection

We evaluated the following properties in the pedestrian
detection experiment:

• Which is better? A model with three convolutional
layers (3-layer) or a model with four convolutional
layers (4-layer)? (3-layer and 4-layer in Table I. The
4-layer model is better.)

Next, we compared three convolutional layers (3-layer;
Conv4, Conv6, and Conv7) with four convolutional layers (4-
layer; Conv4, Conv6, Conv7, and Conv8) in SSD-MR. The
3- and 4-layer models were trained using 70,000 iterations
on the PNM dataset. The pedestrian detection methods are
validated with average precision (AP) and average recall
(AR) in Table I. By using the plain setting (without multi-
scale voting), the 4-layer model is +1.41% better than the
3-layer model with F-measure.

• With or without multi-scale voting in pedestrian detec-
tion? (w/ multi-scale voting and w/o multi-scale voting
in Table I. With multi-scale voting is better.)

We compared pedestrian detection models both with and
without multi-scale voting. From the results of our com-
parison, we can see that multi-scale voting is an effective
method, especially in the recall scores (+0.48% for 3-layer
and +1.71% for 4-layer). Both models perform better with
multi-scale voting (+0.34%@3-layer and +1.19%@4-layer
with F-measure).

Finally, we improved +1.75%@F-measure and
+2.54%@recall with SSD-MR with four-layer, multi-
scale voting. The visual results are shown in Figure 9. Here,



(a) IDT (b) SSD with LSTM (c) SSD-MR (ours)

Fig. 10. Confusion matrices for joint pedestrian detection and risk-level prediction. Our SSD-MR achieved averaged 79.33 score.

TABLE III
RISK-LEVEL PREDICTION: COMPARISON OF OUR APPROACH TO

VARIOUS PARAMETERS AND RELATED WORKS. AR, AP AND AF
INDICATE AVERAGE RECALL, AVERAGE PRECISION AND AVERAGE

F-MEASURE.

Approach AR AP AF
IDT[19] .6167 .5531 .5828

Temporal Stream[25] .3983 .3670 .3644
Spatial Stream[25] .3515 .3436 .3178

Two Stream[25] .3299 .2899 .2990
SSD with LSTM .6647 .5667 .5499
SSD-MR (ours) .7970 .7212 .7437

it can be seen that our SSD-MR effectively detected various
scales even though nighttime scenes are included in the
test sample. Note that pedestrians cannot be detected when
the outline is not clear because of halation and background
darkness (the bottom-left in Figure 9). Pedestrian detection
is obviously very challenging when halation is present.
Although pedestrian detection does not work well at every
frame, our goal is to predict a risk-level (including no-risk
labels) from some of the frames in which pedestrians are
detected in temporal order.

B. Risk prediction

In the temporal convolution process, we tune the number
of blocks as shown in Figure 8. Table II lists the relationship
between the stacked block(s) and the performance with
AR, AP, and F-score. The mean performance rate in the
joint pedestrian detection and risk-level prediction task is
evaluated in the table. The best model is three stacking blocks
with the proposed model.

We compared our SSD-MR with representative mod-
els, specifically IDT, two-stream CNN, and SSD with
LSTM. Basically, we employ the original tunings from
IDT (HOG/HOF/MBH, codeword vector and support vector
machine), two-stream CNN, and SSD with LSTM [34]. The
two-stream CNN is trained on the PNM dataset in addition
to the UCF101 pre-trained spatial- and temporal-stream.
Additionally, the LSTM is assigned on behalf of the temporal
convolution. Table III lists the results obtained on the PNM
dataset.

Our approach achieves better results than the IDT and
two-stream CNN (ours .7437 vs. IDT .5828 and two-stream
CNN .2990 with F-score). Although a two-stream CNN

is known as a representative motion model, it does not
work well on the PNM dataset. We consider it likely that
stacked flow images constructed by displacements of dense
optical flow would include a large amount of noise. Moving
vehicle-mounted cameras capture relatively large amounts of
ego-motion compared with the movements of a pedestrian.
Moreover, the videos included in the PNM dataset were
recorded under a variety of adverse conditions, e.g. night-
time, rain, cluttered backgrounds, and viewpoint differences.
The motion models including the IDT are disadvantageous
to the conditions.

Interestingly, our temporal convolution with three stacked
blocks outperformed the SSD with LSTM by +19.38%
(.7437 vs. .5499 with F-measure). Against an LSTM, which
has 256 × 256 × 4 × 2 parameters (256 × 256 fully
connected layer, input and two gates have weights for the
current input and previous output), our temporal convolution
has fewer parameters: 2 × 4 × 3 (kernel size, 4 convolutions
and 3 blocks). Fewer parameters, faster training speeds, and
a more accurate model are realized with dilated convolution.

Finally, we show the confusion matrices of our model,
SSD with LSTM, and IDT in Figure 10. Our SSD-MR
records 79.33% with averaged F-score which is +13.00%
better than SSD with LSTM. Our SSD-MR model achieved
the most balanced rates {80, 79, 79} at each {zero-, low-
, high-}risk level in the joint pedestrian detection and risk
prediction tasks. Other methods are slightly biased to zero-
risk or high-risk from their prediction results. Please view
the visual results in the supplementary video. Additionally,
to measure the running time of our system, we ran SSD-MR
on an NVIDIA GeForce Titan X with Pascal architecture.
From the results obtained, we confirmed that our system runs
at over 50 fps.

VI. CONCLUSION

We proposed a traffic near-miss detection architecture
with temporal representations that jointly solves pedestrian
detection and risk-level prediction. We also presented our
Pedestrian Near-Miss dataset (PNM dataset), which pro-
vides pedestrian annotations of location and risk level. We
demonstrated the effectiveness of our SSD with motion
representation (SSD-MR). The proposal is superior to the
other model including IDT and SSD with LSTM. We believe
that the combination of pedestrian detector, stacked temporal



activation (STA), and temporal convolution performs effec-
tively in terms of fewer parameters, faster training speed, and
increased accuracy based on the results of a pure comparison
with SSD+LSTM. In future, we will continue to extend the
dataset to improve overall performance.
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