Anticipating Traffic Accidents with Adaptive Loss and Large-scale Incident DB
Tomoyuki SUZUKI*, Hirokatsu KATAOKA*, Yoshimitsu AOKI, Yutaka SATOH | AIST, Keio Univ.

Motivation
- Self-driving car MUST avoid a traffic accident
- Request for (i) accidental videos in DB (ii) earlier anticipation

Contributions
- Adalea (Adaptive Loss for Early Anticipation) which allows to gradually learn an earlier anticipation
- QRNN (Quasi-Recurrence Neural Net) in video recognition task
- NIDB (Near-miss Incident DataBase) to understand and anticipate traffic accidents/incidents

Technical Contribution
- Adalea (Adaptive Loss for Early Anticipation) which allows to gradually learn an earlier anticipation
- QRNN (Quasi-Recurrence Neural Net) in video recognition task
- NIDB (Near-miss Incident DataBase) to understand and anticipate traffic accidents/incidents

Database Contribution
- NIDB (Near-miss Incident DataBase) to understand and anticipate traffic accidents/incidents

System

1. Global feature
 - Use NIDB pretrain model
2. Local feature
 - Detect candidates of risk-factors
 - Use DSA [4]
3. Time-sequential analysis
 - Use QRNN
4. Output the risk rate r_t
5. If $r_t > \theta$, Decide the presence of a future accident
 - 7.7 × larger positives than the conventional
 - Detail annotations
 - Risk-factors (bicycle, pedestrian, vehicle)
 - Near-miss duration (start and end frame)

Results

Qualitative Results
- Encourages a model to anticipate earlier gradually

Quantitative Results
- Effectiveness of Adalea and QRRN in both metric

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP [%]</th>
<th>ATTC [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>52.1</td>
<td>2.45</td>
</tr>
<tr>
<td>QRNN</td>
<td>53.2</td>
<td>4.62</td>
</tr>
<tr>
<td>Adalea</td>
<td>57.8</td>
<td>3.44</td>
</tr>
<tr>
<td>Ours 1</td>
<td>61.2</td>
<td>2.71</td>
</tr>
<tr>
<td>Ours 2</td>
<td>62.3</td>
<td>3.22</td>
</tr>
<tr>
<td>Ours 3</td>
<td>64.1</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Adaptive Loss for Early Anticipation (Adalea, ours)

\[
\text{for positive: } L_{\text{EL}}(r_t) = \sum_{i=1}^{T} \alpha \log (r_i)
\]

\[
\alpha = \exp (\text{max}(0, d - F \cdot \Phi (e - 1) - \gamma))
\]

\[
\text{for negative: } L_{\text{EL}}(r_i) = \sum_{i=1}^{T} \gamma - \log (1 - r_i)
\]

\[
\gamma = \gamma (t, r, \text{risk rate}, F, \text{frame rate}, r \text{ training epoch,} \Phi \text{ hyper parameter}) \text{ function which returns ATTC}
\]

Always encourages an earlier anticipation than previous epoch

Depending on “how early the model can anticipate a traffic accident at each epoch”, referring Average Time-To-Collision (ATTC)

Ranges from easy (not early) anticipation to difficult (earlier) one according to training progress, like Curricular Leaning

Loss function

\[L_{\text{EL}}(r_t) = \sum_{i=1}^{T} \alpha \log (r_i) \]

\[\alpha = \exp (\text{max}(0, d - \lambda \cdot (e - 1))) \]

\[L_{\text{EL}}(r_i) = \sum_{i=1}^{T} \gamma - \log (1 - r_i) \]

\[\gamma = \gamma (t, r, \text{risk rate}, F, \text{frame rate}, r \text{ training epoch,} \Phi \text{ hyper parameter}) \text{ function which returns ATTC} \]