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n 教師なし特徴表現学習とは？
n 論⽂紹介

➤~ CVPR 2017
➤~ CVPR 2018
➤さらに最新の動向

n まとめ

本⽇の内容
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n 今回の良い特徴表現＝discriminativeな特徴表現
- 解きたいタスク(target task)に有効なデータの特徴表現を
擬似的なタスク(pretext task)を事前に解くことで獲得する

- disentangle（解釈可能な）など，他の良さについては問わない
n Self-supervised Learning 

- ⾃動で⽣成できる教師信号を⽤いてpretext taskを定義
- 画像，動画，⾔語，マルチモーダル

n Self-supervised以外 (Unsupervised)
- データ分布を表現するモデルを学習する (教師はない)

教師なし特徴表現学習とは？
教師がないデータを⽤いてそれらの良い特徴
表現を獲得すること（そのまま）

主に，画像のみを⽤いたSelf-supervised Learningについて
（必要に応じてSelf-supervised以外にも触れます）
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n 評価⽅法① : 特徴抽出＋識別器
➤ Pretext taskで学習したモデルを重み固定の特徴抽出器として⽤い，

Target task での性能を測る
➤ 同じデータセット内で評価することが多い

- Pretext : ラベルなしImageNet => Target : ラベルありImageNet
➤ AlexNetで評価するのがスタンダード (になってしまっている)

どうやって良い特徴表現かを評価する？

モデル

Pretext task

ex. ImageNet
w/o labels

ex. AlexNet

モデル

Target task 

識
別
器

固定学習 学習

(ex. ImageNet classification)

+

画像
データ ラベル

画像
データ
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n 評価⽅法➁ : Fine-tuning
➤ Pretext taskで学習したパラメータを初期値として⽤い，target task
でFine-tuningした時の性能を測る

➤ 異なるデータセット間で評価を⾏うことが多い
- Pretext : ラベルなしImageNet => Target : ラベルありPascal VOC

➤ AlexNetで評価するのがスタンダードなのは評価⽅法①と同様

どうやって良い特徴表現かを評価する？

モデル

Pretext task

ex. ImageNet
w/o labels

ex. AlexNet

Target task 

学習

+

画像
データ ラベル

モデル

学習 画像
データ

今回はラベルなしImageNet => Pascal VOC(cls, det, seg)を基準

(ex. Pascal VOC segmentation)
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Pretext taskの⼤別

Context prediction

識別系 再構成系 ⽣成モデル系 その他

Spot Artifact

Colorization

Split-brain

VAE系

GAN系

Instance 
Discrimination

Jigsaw

Jigsaw++

Rotation

Counting

n CVPR2018までの研究をPretext taskを元に⼤別
n 便宜上の分類であることに注意

➤ アイデアベースの⼿法が多い為，分類が難しい

Autoencoder系

Context Encoder 

Noise as target
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Pretext taskの⼤別

Context prediction

識別系 再構成系 ⽣成モデル系

Spot Artifact

Colorization

Split-brain

VAE系

GAN系Jigsaw

Jigsaw++

Rotation

n 識別系
➤ 教師なしデータ𝑥に対応する，⾃動で得られるカテゴリ𝑡を定義

- 教師ありデータ{𝑥, 𝑡}となる
- 𝑥に施された何らかの処理𝜙(⋅)に応じて𝑡を定義する場合が多い
- その場合は教師ありデータ{𝜙(𝑥), 𝑡}

Autoencoder系

Context Encoder 

その他

Instance 
Discrimination

Counting

Noise as target
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Pretext taskの⼤別

Context prediction

識別系 再構成系 ⽣成モデル系

Spot Artifact

Colorization

Split-brain

VAE系

GAN系Jigsaw

Jigsaw++

Rotation

n 再構成系
➤ 𝑥 = {𝑥+, 𝑥,}の⼀部を観測できている状態で𝑥または𝑥,を推定

- 全て観測できている場合がAuto encoder
- 回帰学習や条件付き⽣成モデル的アプローチがある

Autoencoder系

Context Encoder 

その他

Instance 
Discrimination

Counting

Noise as target
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Pretext taskの⼤別
n ⽣成モデル系

➤ データ分布𝑝(𝑥)を学習することに付随して表現を獲得
- VAEは潜在変数，GANはdiscriminatorの中間特徴など
- (個⼈的には) うまく学習できれば⼀番良い表現を獲得できそう
- しかし， 𝑝(𝑥)の学習が難しい (下界の最⼤化，ミニマックス問題)

Context prediction

識別系 再構成系 ⽣成モデル系

Spot Artifact

Colorization

Split-brain

VAE系

GAN系Jigsaw

Jigsaw++

Rotation

Autoencoder系

Context Encoder 

基本的にself-supervisedと⾔われない

その他

Instance 
Discrimination

Counting

Noise as target



~ CVPR 2017
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Pretext taskの⼤別

Context prediction

識別系 再構成系 ⽣成モデル系 その他

Colorization

Split-brain

VAE系

GAN系Jigsaw

n CVPR2018までの研究をPretext taskを元に⼤別
n 便宜上の分類であることに注意

➤ アイデアベースの⼿法が多い為，分類が難しい

AutoEncoder系

Context Encoder 
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n Context Prediction (CP) 
➤ Pretext task : 画像を3×3に分割し，⼆つのパッチの相対位置の8クラス分類

- 枝構造を持つSiameseNetに2つのパッチを⼊⼒
➤ 画像のデータ構造を利⽤した最初のSelf-supervisedな表現学習⼿法
➤ Fine-tuningの結果はランダム初期化より少し良い程度

cover clusters of, say, foliage. A few subsequent works have
attempted to use representations more closely tied to shape
[36, 43], but relied on contour extraction, which is difficult
in complex images. Many other approaches [22, 29, 16]
focus on defining similarity metrics which can be used in
more standard clustering algorithms; [45], for instance,
re-casts the problem as frequent itemset mining. Geom-
etry may also be used to for verifying links between im-
ages [44, 6, 23], although this can fail for deformable ob-
jects.

Video can provide another cue for representation learn-
ing. For most scenes, the identity of objects remains un-
changed even as appearance changes with time. This kind
of temporal coherence has a long history in visual learning
literature [18, 59], and contemporaneous work shows strong
improvements on modern detection datasets [57].

Finally, our work is related to a line of research on dis-
criminative patch mining [13, 50, 28, 37, 52, 11], which has
emphasized weak supervision as a means of object discov-
ery. Like the current work, they emphasize the utility of
learning representations of patches (i.e. object parts) before
learning full objects and scenes, and argue that scene-level
labels can serve as a pretext task. For example, [13] trains
detectors to be sensitive to different geographic locales, but
the actual goal is to discover specific elements of architec-
tural style.

3. Learning Visual Context Prediction
We aim to learn an image representation for our pre-

text task, i.e., predicting the relative position of patches
within an image. We employ Convolutional Neural Net-
works (ConvNets), which are well known to learn complex
image representations with minimal human feature design.
Building a ConvNet that can predict a relative offset for a
pair of patches is, in principle, straightforward: the network
must feed the two input patches through several convolu-
tion layers, and produce an output that assigns a probability
to each of the eight spatial configurations (Figure 2) that
might have been sampled (i.e. a softmax output). Note,
however, that we ultimately wish to learn a feature embed-
ding for individual patches, such that patches which are vi-
sually similar (across different images) would be close in
the embedding space.

To achieve this, we use a late-fusion architecture shown
in Figure 3: a pair of AlexNet-style architectures [32] that
process each patch separately, until a depth analogous to
fc6 in AlexNet, after which point the representations are
fused. For the layers that process only one of the patches,
weights are tied between both sides of the network, such
that the same fc6-level embedding function is computed for
both patches. Because there is limited capacity for joint
reasoning—i.e., only two layers receive input from both
patches—we expect the network to perform the bulk of the

Patch 2 Patch 1 

pool1 (3x3,96,2) pool1 (3x3,96,2) 
LRN1 LRN1 

pool2 (3x3,384,2) pool2 (3x3,384,2) 
LRN2 LRN2 

fc6 (4096) fc6 (4096) 

conv5 (3x3,256,1) conv5 (3x3,256,1) 
conv4 (3x3,384,1) conv4 (3x3,384,1) 
conv3 (3x3,384,1) conv3 (3x3,384,1) 

conv2 (5x5,384,2) conv2 (5x5,384,2) 

conv1 (11x11,96,4) conv1 (11x11,96,4) 

fc7 (4096) 

fc8 (4096) 
fc9 (8) 

pool5 (3x3,256,2) pool5 (3x3,256,2) 

Figure 3. Our architecture for pair classification. Dotted lines in-
dicate shared weights. ‘conv’ stands for a convolution layer, ‘fc’
stands for a fully-connected one, ‘pool’ is a max-pooling layer, and
‘LRN’ is a local response normalization layer. Numbers in paren-
theses are kernel size, number of outputs, and stride (fc layers have
only a number of outputs). The LRN parameters follow [32]. All
conv and fc layers are followed by ReLU nonlinearities, except fc9
which feeds into a softmax classifier.

semantic reasoning for each patch separately. When design-
ing the network, we followed AlexNet where possible.

To obtain training examples given an image, we sample
the first patch uniformly, without any reference to image
content. Given the position of the first patch, we sample the
second patch randomly from the eight possible neighboring
locations as in Figure 2.

3.1. Avoiding “trivial” solutions
When designing a pretext task, care must be taken to en-

sure that the task forces the network to extract the desired
information (high-level semantics, in our case), without tak-
ing “trivial” shortcuts. In our case, low-level cues like
boundary patterns or textures continuing between patches
could potentially serve as such a shortcut. Hence, for the
relative prediction task, it was important to include a gap
between patches (in our case, approximately half the patch
width). Even with the gap, it is possible that long lines span-
ning neighboring patches could could give away the correct
answer. Therefore, we also randomly jitter each patch loca-
tion by up to 7 pixels (see Figure 2).

However, even these precautions are not enough: we
were surprised to find that, for some images, another triv-
ial solution exists. We traced the problem to an unexpected
culprit: chromatic aberration. Chromatic aberration arises
from differences in the way the lens focuses light at differ-
ent wavelengths. In some cameras, one color channel (com-
monly green) is shrunk toward the image center relative to
the others [5, p. 76]. A ConvNet, it turns out, can learn to lo-
calize a patch relative to the lens itself (see Section 4.2) sim-
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SiameseNet

Cls. Det. Seg.

random 53.3 43.4 19.8
CP 55.3 46.6 —

occur in a specific spatial configuration (if there is no spe-
cific configuration of the parts, then it is “stuff” [1]). We
present a ConvNet-based approach to learn a visual repre-
sentation from this task. We demonstrate that the resulting
visual representation is good for both object detection, pro-
viding a significant boost on PASCAL VOC 2007 compared
to learning from scratch, as well as for unsupervised object
discovery / visual data mining. This means, surprisingly,
that our representation generalizes across images, despite
being trained using an objective function that operates on a
single image at a time. That is, instance-level supervision
appears to improve performance on category-level tasks.

2. Related Work
One way to think of a good image representation is as

the latent variables of an appropriate generative model. An
ideal generative model of natural images would both gener-
ate images according to their natural distribution, and be
concise in the sense that it would seek common causes
for different images and share information between them.
However, inferring the latent structure given an image is in-
tractable for even relatively simple models. To deal with
these computational issues, a number of works, such as
the wake-sleep algorithm [25], contrastive divergence [24],
deep Boltzmann machines [48], and variational Bayesian
methods [30, 46] use sampling to perform approximate in-
ference. Generative models have shown promising per-
formance on smaller datasets such as handwritten dig-
its [25, 24, 48, 30, 46], but none have proven effective for
high-resolution natural images.

Unsupervised representation learning can also be formu-
lated as learning an embedding (i.e. a feature vector for
each image) where images that are semantically similar are
close, while semantically different ones are far apart. One
way to build such a representation is to create a supervised
“pretext” task such that an embedding which solves the task
will also be useful for other real-world tasks. For exam-
ple, denoising autoencoders [56, 4] use reconstruction from
noisy data as a pretext task: the algorithm must connect
images to other images with similar objects to tell the dif-
ference between noise and signal. Sparse autoencoders also
use reconstruction as a pretext task, along with a sparsity
penalty [42], and such autoencoders may be stacked to form
a deep representation [35, 34]. (however, only [34] was suc-
cessfully applied to full-sized images, requiring a million
CPU hours to discover just three objects). We believe that
current reconstruction-based algorithms struggle with low-
level phenomena, like stochastic textures, making it hard to
even measure whether a model is generating well.

Another pretext task is “context prediction.” A strong
tradition for this kind of task already exists in the text do-
main, where “skip-gram” [40] models have been shown to
generate useful word representations. The idea is to train a

3 2 1 

5 4 
8 7 6 

); Y = 3 , X = ( 
Figure 2. The algorithm receives two patches in one of these eight
possible spatial arrangements, without any context, and must then
classify which configuration was sampled.

model (e.g. a deep network) to predict, from a single word,
the n preceding and n succeeding words. In principle, sim-
ilar reasoning could be applied in the image domain, a kind
of visual “fill in the blank” task, but, again, one runs into the
problem of determining whether the predictions themselves
are correct [12], unless one cares about predicting only very
low-level features [14, 33, 53]. To address this, [39] predicts
the appearance of an image region by consensus voting of
the transitive nearest neighbors of its surrounding regions.
Our previous work [12] explicitly formulates a statistical
test to determine whether the data is better explained by a
prediction or by a low-level null hypothesis model.

The key problem that these approaches must address is
that predicting pixels is much harder than predicting words,
due to the huge variety of pixels that can arise from the same
semantic object. In the text domain, one interesting idea is
to switch from a pure prediction task to a discrimination
task [41, 9]. In this case, the pretext task is to discriminate
true snippets of text from the same snippets where a word
has been replaced at random. A direct extension of this to
2D might be to discriminate between real images vs. im-
ages where one patch has been replaced by a random patch
from elsewhere in the dataset. However, such a task would
be trivial, since discriminating low-level color statistics and
lighting would be enough. To make the task harder and
more high-level, in this paper, we instead classify between
multiple possible configurations of patches sampled from
the same image, which means they will share lighting and
color statistics, as shown on Figure 2.

Another line of work in unsupervised learning from im-
ages aims to discover object categories using hand-crafted
features and various forms of clustering (e.g. [51, 47]
learned a generative model over bags of visual words). Such
representations lose shape information, and will readily dis-

2

Fine-tuning on Pascal VOC

識別系

Doersch et al., “Unsupervised visual representation learning by context prediction”, ICCV 2015.

(~ CVPR2017)
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n Jigsaw Puzzle (JP) 
➤ Pretext task : パッチをランダムな順に⼊⼒し，正しい順列をクラス識別

- SiameseNetに9つのパッチを同時に⼊⼒
- 順列は膨⼤な数になるのでハミング距離が⼤きくなるように選んだ

1000クラスで学習
➤ CPはパッチによってはかなりあいまい性がある(下図)
➤ ネットワークが⾒れるパッチが多い⽅があいまい性が減る
➤ CPと⽐較するとかなり精度が改善している

識別系

Cls. Det. Seg.

random 53.3 43.4 19.8
CP 55.3 46.6 —
JP 67.7 53.2 —

左上や真ん中上の中⼼からの
相対位置を推定するのはかなり難しい

2 M. Noroozi and P. Favaro

(a) (b) (c)

Fig. 1: Learning image representations by solving Jigsaw puzzles. (a) The image
from which the tiles (marked with green lines) are extracted. (b) A puzzle ob-
tained by shu✏ing the tiles. Some tiles might be directly identifiable as object
parts, but others are ambiguous (e.g., have similar patterns) and their identi-
fication is much more reliable when all tiles are jointly evaluated. In contrast,
with reference to (c), determining the relative position between the central tile
and the top two tiles from the left can be very challenging [10].

While it is true that biological agents typically make use of multiple images and
also integrate additional sensory information, such as ego-motion, it is also true
that single snapshots may carry more information than we have been able to ex-
tract so far. This work shows that this is indeed the case. We introduce a novel
self-supervised task, the Jigsaw puzzle reassembly problem (see Fig. 1), which
builds features that yield high performance when transferred to detection and
classification tasks.

We argue that solving Jigsaw puzzles can be used to teach a system that
an object is made of parts and what these parts are. The association of each
separate puzzle tile to a precise object part might be ambiguous. However, when
all the tiles are observed, the ambiguities might be eliminated more easily be-
cause the tile placement is mutually exclusive. This argument is supported by
our experimental validation. Training a Jigsaw puzzle solver takes about 2.5
days compared to 4 weeks of [10]. Also, there is no need to handle chromatic
aberration or to build robustness to pixelation. Moreover, the features are highly
transferrable to detection and classification and yield the highest performance
to date for an unsupervised method.

2 Related work

This work falls in the area of representation/feature learning, which is an unsu-
pervised learning problem [3]. Representation learning is concerned with building
intermediate representations of data useful to solve machine learning tasks. It
also involves transfer learning [41], as one applies and repurposes features that
have been learned by solving the Jigsaw puzzle to other tasks such as object
classification and detection. In our experiments we do so via the pre-training +

① ➁

⑤

Noroozi et al., “Unsupervised learning of visual representations by solving jigsaw puzzles ”, ECCV 2016.

(~ CVPR2017)
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n ⾼次な情報を必要としないPretext taskの解法
➤ しかし，実際に捉えてほしいのは⾼次(semantic)な情報

➤ パッチ境界の低レベルな情報のみで
相対位置の推定が可能？
- パッチ間にGAPをつける
- パッチ位置をjittering

➤ ⾊収差によって相対位置の推定が可能？
- ランダムに2チャネルをGaussian noise
に置き換え

trivial solution

occur in a specific spatial configuration (if there is no spe-
cific configuration of the parts, then it is “stuff” [1]). We
present a ConvNet-based approach to learn a visual repre-
sentation from this task. We demonstrate that the resulting
visual representation is good for both object detection, pro-
viding a significant boost on PASCAL VOC 2007 compared
to learning from scratch, as well as for unsupervised object
discovery / visual data mining. This means, surprisingly,
that our representation generalizes across images, despite
being trained using an objective function that operates on a
single image at a time. That is, instance-level supervision
appears to improve performance on category-level tasks.

2. Related Work
One way to think of a good image representation is as

the latent variables of an appropriate generative model. An
ideal generative model of natural images would both gener-
ate images according to their natural distribution, and be
concise in the sense that it would seek common causes
for different images and share information between them.
However, inferring the latent structure given an image is in-
tractable for even relatively simple models. To deal with
these computational issues, a number of works, such as
the wake-sleep algorithm [25], contrastive divergence [24],
deep Boltzmann machines [48], and variational Bayesian
methods [30, 46] use sampling to perform approximate in-
ference. Generative models have shown promising per-
formance on smaller datasets such as handwritten dig-
its [25, 24, 48, 30, 46], but none have proven effective for
high-resolution natural images.

Unsupervised representation learning can also be formu-
lated as learning an embedding (i.e. a feature vector for
each image) where images that are semantically similar are
close, while semantically different ones are far apart. One
way to build such a representation is to create a supervised
“pretext” task such that an embedding which solves the task
will also be useful for other real-world tasks. For exam-
ple, denoising autoencoders [56, 4] use reconstruction from
noisy data as a pretext task: the algorithm must connect
images to other images with similar objects to tell the dif-
ference between noise and signal. Sparse autoencoders also
use reconstruction as a pretext task, along with a sparsity
penalty [42], and such autoencoders may be stacked to form
a deep representation [35, 34]. (however, only [34] was suc-
cessfully applied to full-sized images, requiring a million
CPU hours to discover just three objects). We believe that
current reconstruction-based algorithms struggle with low-
level phenomena, like stochastic textures, making it hard to
even measure whether a model is generating well.

Another pretext task is “context prediction.” A strong
tradition for this kind of task already exists in the text do-
main, where “skip-gram” [40] models have been shown to
generate useful word representations. The idea is to train a

3 2 1 

5 4 
8 7 6 

Figure 2. The algorithm receives two patches in one of these eight
possible spatial arrangements, without any context, and must then
classify which configuration was sampled.

model (e.g. a deep network) to predict, from a single word,
the n preceding and n succeeding words. In principle, sim-
ilar reasoning could be applied in the image domain, a kind
of visual “fill in the blank” task, but, again, one runs into the
problem of determining whether the predictions themselves
are correct [12], unless one cares about predicting only very
low-level features [14, 33, 53]. To address this, [39] predicts
the appearance of an image region by consensus voting of
the transitive nearest neighbors of its surrounding regions.
Our previous work [12] explicitly formulates a statistical
test to determine whether the data is better explained by a
prediction or by a low-level null hypothesis model.

The key problem that these approaches must address is
that predicting pixels is much harder than predicting words,
due to the huge variety of pixels that can arise from the same
semantic object. In the text domain, one interesting idea is
to switch from a pure prediction task to a discrimination
task [41, 9]. In this case, the pretext task is to discriminate
true snippets of text from the same snippets where a word
has been replaced at random. A direct extension of this to
2D might be to discriminate between real images vs. im-
ages where one patch has been replaced by a random patch
from elsewhere in the dataset. However, such a task would
be trivial, since discriminating low-level color statistics and
lighting would be enough. To make the task harder and
more high-level, in this paper, we instead classify between
multiple possible configurations of patches sampled from
the same image, which means they will share lighting and
color statistics, as shown on Figure 2.

Another line of work in unsupervised learning from im-
ages aims to discover object categories using hand-crafted
features and various forms of clustering (e.g. [51, 47]
learned a generative model over bags of visual words). Such
representations lose shape information, and will readily dis-

2

Figure 3. The grayed-out area has been apertured on a 96x96 size
patch. The aperture is 64x64, the smallest size we use. The left im-
age shows the pixel arrangement on group layer four. At least one
3x3 region is not directly interfered with by the aperture. However,
on the right, layer 5, only one pixel is fully uncovered. All spatial
interactions at this layer will involve at least one occluded region.
Ideally, this would create some inhibition to layer five forming
meaningful spatial associations and perhaps bias towards layer 4
which can. Note that this description is simplified and somewhat
imprecise since image information can propagate laterally through
consecutive layers.

the 5th layers from learning since it cannot see the whole
patch. Ideally, this would put emphasis on learning in the
4th layers. See Figure 3 for an example of this.

A random aperture on two of the three patches in a set
is created. The idea behind leaving one patch un-apertured
is so that we don’t completely bias against group layer 5,
we still want it to learn. The aperture is square and for each
sample is randomly sized between 64x64 and 96x96. The
minimum size is 64 since this is the smallest size we can
use and guarantee that at least one 3x3 convolution is un-
obstructed in the fourth layer. The position of the aperture
is also randomized but must fit inside the patch so we can
never have a viewable area less than 64x64. The area out-
side the aperture is filled with ImageNet mean RGB. The
size and position of the aperture in two patches is yoked.
Which two patches are apertured is randomized for each
sample.

3.1.5 Rotation with Classification (RWC)

Each patch in a patch/context model may simply contain
a part of a much larger object. In general, this is the in-
tent of the patch/context approach. Might it help if parts
can be understood at different orientations? For instance, if
one has seen an upside-down roof top, one may better un-
derstand a triangular yield sign or a funnel. Additionally,
humans have the ability to conditionally recognize upside-
down parts embedded in a whole image. This is illustrated
by the famous Thatcher illusion [41] (see Figure 4). We
reason that self-supervised learning might benefit from ex-
posure to upside-down patches, and it would help to make
the network identify if patches are right-side-up or upside-
down. We do this by flipping the whole image so that all
patches are flipped. Then, we double the number of classes

Figure 4. On the left is an example of the famous thatcher illusion
[41, 8]. It demonstrates conditional sensitivity to upside-down fea-
tures in an image against the background. We used this mostly as
inspiration. On the left house image [42], the network can tell that
the blue bordered area comes from the upper left corner based on
chromatic aberration alone. However, on the right image, rota-
tion with classification makes it tell us if the patch is inverted and
comes from the lower right corner. If it uses chromatic aberration
as the only cue, it would be wrong 50% of the time. (Figure is
enlarged in appendix: see figure 9)

by giving each upside-down image its own class. For in-
stance, if we have 20 classes of patch arrangements, when
we add upside-down images, we have 40 classes. We also
explore 90 and 270 degree rotations. This yields a total of
80 classes.

Forcing the network to classify patches as upside-down
also reduces the strength of clues generated by chromatic
aberration. Aberration radiates from the center of the im-
age. Without rotating the image, a downward sloping arch
of green/magenta to the left indicates the patch comes from
the upper left-hand corner. However, in a flipped image, the
same pattern indicates the lower right corner instead. By
just trying to guess upper left-hand corner from the chro-
matic aberration pattern, it will be wrong 50% of the time.
With four rotations, it will be wrong 75% of the time.

3.1.6 Miscellany

We present experiments with a few other tricks which we
found helpful to varying degrees. One method is a typical
mixture of label preserving transformations [37, 5, 4] we are
calling the usual bag of tricks (UBT). This involves aug-
mentation by randomly mirroring, zooming, and cropping
images. The mirroring is simple horizontal flipping and has
no special classification, like with RWC, since this would
most likely prove confusing to the network. For random
zooming, we randomly scaled each input 110x110 patch
to between 96x96 to 128x128, and then extract a random
96x96 patch from this. The zoom and crop location is ran-
dom for each sample, but is yoked between the three input
patches in a set.

Borrowed from [33], we take the idea of mixing the
method of rescaling during UBT. Each of the three patches
in a set is rescaled by one of four randomly chosen rescale
techniques (Bilinear, Area, Bicubic or Lanczos). The ran-

5

例えば…

⾊収差の例

学習時にチャネル間の「収差」を
得られなくする

境界やその外挿で判断できなく
する
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n Context Encoder (CE) 
➤ Pretext task : ⽋損画像の補完

- Adversarial Loss + L2 Lossを提案しているが，表現学習の実験は
L2 Lossのみ

- つまりただの回帰
➤ ネットワークは表現学習の段階で⽋損画像しか⾒ていない

再構成系

Cls. Det. Seg.

random 53.3 43.4 19.8
CE 56.5 44.5 29.7
JP 67.7 53.2 —

differ in the approach: whereas [7] are solving a discrimina-
tive task (is patch A above patch B or below?), our context
encoder solves a pure prediction problem (what pixel inten-
sities should go in the hole?). Interestingly, similar distinc-
tion exist in using language context to learn word embed-
dings: Collobert and Weston [5] advocate a discriminative
approach, whereas word2vec [30] formulate it as word pre-
diction. One important benefit of our approach is that our
supervisory signal is much richer: a context encoder needs
to predict roughly 15,000 real values per training example,
compared to just 1 option among 8 choices in [7]. Likely
due in part to this difference, our context encoders take far
less time to train than [7]. Moreover, context based predic-
tion is also harder to “cheat” since low-level image features,
such as chromatic aberration, do not provide any meaning-
ful information, in contrast to [7] where chromatic aberra-
tion partially solves the task. On the other hand, it is not yet
clear if requiring faithful pixel generation is necessary for
learning good visual features.

Image generation Generative models of natural images
have enjoyed significant research interest [16, 24, 35]. Re-
cently, Radford et al. [33] proposed new convolutional ar-
chitectures and optimization hyperparameters for Genera-
tive Adversarial Networks (GAN) [16] producing encour-
aging results. We train our context encoders using an ad-
versary jointly with reconstruction loss for generating in-
painting results. We discuss this in detail in Section 3.2.

Dosovitskiy et al. [10] and Rifai et al. [36] demonstrate
that CNNs can learn to generate novel images of particular
object categories (chairs and faces, respectively), but rely on
large labeled datasets with examples of these categories. In
contrast, context encoders can be applied to any unlabeled
image database and learn to generate images based on the
surrounding context.

Inpainting and hole-filling It is important to point out
that our hole-filling task cannot be handled by classical in-
painting [4, 32] or texture synthesis [2, 11] approaches,
since the missing region is too large for local non-semantic
methods to work well. In computer graphics, filling in large
holes is typically done via scene completion [19], involv-
ing a cut-paste formulation using nearest neighbors from a
dataset of millions of images. However, scene completion
is meant for filling in holes left by removing whole objects,
and it struggles to fill arbitrary holes, e.g. amodal comple-
tion of partially occluded objects. Furthermore, previous
completion relies on a hand-crafted distance metric, such as
Gist [31] for nearest-neighbor computation which is infe-
rior to a learned distance metric. We show that our method
is often able to inpaint semantically meaningful content in
a parametric fashion, as well as provide a better feature for
nearest neighbor-based inpainting methods.

Figure 2: Context Encoder. The context image is passed
through the encoder to obtain features which are connected
to the decoder using channel-wise fully-connected layer as
described in Section 3.1. The decoder then produces the
missing regions in the image.

3. Context encoders for image generation

We now introduce context encoders: CNNs that predict
missing parts of a scene from their surroundings. We first
give an overview of the general architecture, then provide
details on the learning procedure and finally present various
strategies for image region removal.

3.1. Encoder-decoder pipeline

The overall architecture is a simple encoder-decoder
pipeline. The encoder takes an input image with missing
regions and produces a latent feature representation of that
image. The decoder takes this feature representation and
produces the missing image content. We found it important
to connect the encoder and the decoder through a channel-
wise fully-connected layer, which allows each unit in the
decoder to reason about the entire image content. Figure 2
shows an overview of our architecture.

Encoder Our encoder is derived from the AlexNet archi-
tecture [26]. Given an input image of size 227⇥227, we use
the first five convolutional layers and the following pooling
layer (called pool5) to compute an abstract 6 ⇥ 6 ⇥ 256

dimensional feature representation. In contrast to AlexNet,
our model is not trained for ImageNet classification; rather,
the network is trained for context prediction “from scratch”
with randomly initialized weights.

However, if the encoder architecture is limited only to
convolutional layers, there is no way for information to di-
rectly propagate from one corner of the feature map to an-
other. This is so because convolutional layers connect all
the feature maps together, but never directly connect all lo-
cations within a specific feature map. In the present archi-
tectures, this information propagation is handled by fully-
connected or inner product layers, where all the activations
are directly connected to each other. In our architecture, the
latent feature dimension is 6 ⇥ 6 ⇥ 256 = 9216 for both
encoder and decoder. This is so because, unlike autoen-

Pathak et al., “Context encoders: Feature learning by inpainting ”, CVPR 2016.

(~ CVPR2017)
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n Colorful Image Colorization (CC) 
➤ Pretext task : グレースケール画像の⾊付け {L => ab}
➤ 単純な回帰ではなく，量⼦化したab空間の識別問題を解く
➤ グレースケール画像⼊⼒を前提として表現学習するため，カラー画像
を扱う場合は，Lab⼊⼒とし，abチャネルはランダムに初期化

n Split-Brain (SB) 
➤ ネットワークをチャネル⽅向に2分割し，

{L => ab, ab => L} のアンサンブル
➤ 回帰ではなく量⼦化して識別問題に
する⽅が良い特徴表現が得られた

再構成系

4 Zhang, Isola, Efros

Fig. 2. Our network architecture. Each conv layer refers to a block of 2 or 3 repeated
conv and ReLU layers, followed by a BatchNorm [30] layer. The net has no pool layers.
All changes in resolution are achieved through spatial downsampling or upsampling
between conv blocks.

[29]. In Section 3.1, we provide quantitative comparisons to Larsson et al., and
encourage interested readers to investigate both concurrent papers.

2 Approach

We train a CNN to map from a grayscale input to a distribution over quantized
color value outputs using the architecture shown in Figure 2. Architectural de-
tails are described in the supplementary materials on our project webpage1, and
the model is publicly available. In the following, we focus on the design of the
objective function, and our technique for inferring point estimates of color from
the predicted color distribution.

2.1 Objective Function

Given an input lightness channel X 2 RH⇥W⇥1, our objective is to learn a
mapping bY = F(X) to the two associated color channels Y 2 RH⇥W⇥2, where
H,W are image dimensions.

(We denote predictions with a b· symbol and ground truth without.) We per-
form this task in CIE Lab color space. Because distances in this space model
perceptual distance, a natural objective function, as used in [1,2], is the Eu-
clidean loss L2(·, ·) between predicted and ground truth colors:

L2( bY,Y) =
1

2

X

h,w

kYh,w � bYh,wk22 (1)

However, this loss is not robust to the inherent ambiguity and multimodal
nature of the colorization problem. If an object can take on a set of distinct
ab values, the optimal solution to the Euclidean loss will be the mean of the
set. In color prediction, this averaging e↵ect favors grayish, desaturated results.
Additionally, if the set of plausible colorizations is non-convex, the solution will
in fact be out of the set, giving implausible results.

1
http://richzhang.github.io/colorization/

Cls. Det. Seg.
random 53.3 43.4 19.8

CC 65.9 46.9 35.6
SB 67.1 46.7 36.0
JP 67.7 53.2 —
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Figure 2: Split-Brain Autoencoders applied to various domains (a) Lab images Input images are divided into the L
channel, which contains grayscale information, and the a and b channels, which contain color information. Network F1

performs automatic colorization, whereas network F2 performs grayscale prediction. (b) RGB-D images Input data X
contains registered RGB and depth images. Depth images are encoded using the HHA encoding [18]. Image representation
F1 is trained by predicting HHA channels. Representation F2 on HHA images is learned by predicting images in Lab space.
Note that the goal of performing these synthesis tasks is to induce representations F1,F2 that transfer well to other tasks.

here, we redefine X1 to be the same shape as original in-
put X 2 RH⇥W⇥C , with channels in set C\C1 zeroed out
(along with the analogous modification to X2).

F⇤
= argmin

F
L1(F(X1),X2) + L2(X1,F(X2)) (4)

The network only sees data subsets but never full input X.
To alleviate this problem, we mix in the autoencoder objec-
tive, as shown in Equation 5, with � 2 [0, 1

2 ].

F⇤
= argmin

F
�L1(F(X1),X2) + �L2(F(X2),X1)

+ (1� 2�)L3(X,F(X))

(5)

Note that unlike the split-brain architecture, in these objec-
tives, there is a domain gap between the distribution of pre-
training data and the full input tensor X.

4. Experiments
In Section 4.1, we apply our proposed split-brain autoen-

coder architecture to learn unsupervised representations on
large-scale image data from ImageNet [37]. We evaluate on
established representation learning benchmarks and demon-
strate state-of-the-art performance relative to previous unsu-
pervised methods [25, 8, 46, 35, 33, 9, 30]. In Section 4.2,
we apply the proposed method on the NYU-D dataset [39],
and show performance above baseline methods.

4.1. Split-Brain Autoencoders on Images

We work with image data X in the Lab color space, and
learn cross-channel encoders with X1 representing the L,
or lightness channel, and X2 containing the ab channels, or
color information. This is a natural choice as (i) networks
such as Alexnet, trained with grouping in their architec-
ture, naturally separate into grayscale and color [26] even

in a fully-supervised setting, and (ii) the individual cross-
channel prediction problem of colorization, L to ab, has
produced strong representations [49, 27]. In preliminary
experiments, we have also explored different cross-channel
prediction problems in other color spaces, such as RGB and
YUV. We found the L and ab to be most effective data split.

To enable comparisons to previous unsupervised tech-
niques, all of our trained networks use AlexNet architec-
tures [26]. Concurrent work from Larsson et al. [28] shows
large performance improvements for the colorization task
when using deeper networks, such as VGG-16 [40] and
ResNet [19]. Because we are training for a pixel-prediction
task, we run the network fully convolutionally [29]. Using
the 1.3M ImageNet dataset [37] (without labels), we train
the following aggregated cross-channel encoders:

• Split-Brain Autoencoder (cl,cl) (Our full method):
A split-brain autoencoder, with one half performing
colorization, and the other half performing grayscale
prediction. The top-level architecture is shown in Fig-
ure 2(a). Both sub-networks are trained for classifi-
cation (cl), with a cross-entropy objective. (In Figure
2(a), the predicted output is a per-pixel probability dis-
tribution, but is visualized with a point estimate using
the annealed-mean [49].)

• Split-Brain Autoencoder (reg,reg): Same as above,
with both sub-networks trained with an `2 loss (reg).

• Ensembled L!ab: Two concatenated disjoint sub-
networks, both performing colorization (predicting ab
from L). One subnetwork is trained with a classifica-
tion objective, and the other with regression.

• (L,ab)!(ab,L): A single network for both coloriza-
tion and grayscale prediction, with regression loss, as
described in Equation 4. This explores an alternative
method for combining cross-channel encoders.

• (L,ab,Lab)!(ab,L,Lab): � =

1
3 using Equation 5.

4

Zhang et al., “Colorful Image Colorization”, ECCV 2016.

Zhang et al., “Split-brain autoencoders: Unsupervised learning by cross-channel prediction”, CVPR 2017.

(~ CVPR2017)
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Pretext taskの⼤別

Context prediction

識別系 再構成系 ⽣成モデル系 その他

Spot Artifact

Colorization

Split-brain

VAE系

GAN系

Instance 
Discrimination

Jigsaw

Jigsaw++

Rotation

Counting

n CVPR2018までの研究をPretext taskを元に⼤別
n 便宜上の分類であることに注意

➤ アイデアベースの⼿法が多い為，分類が難しい

AutoEncoder系

Context Encoder 

Noise as target
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n Learning to Count (LC)
➤ Pretext task : 以下の制約を満たす特徴量を学習
➤ 制約：各分割画像と元画像をそれぞれ同じCNNに⼊⼒し，元画像の出⼒

特徴が全分割画像の出⼒特徴の和と⼀致する
=> 出⼒特徴の各次元が画像内の「ある⾼次なprimitive」の量を表す場合に
上記の制約を満たすことができる

➤ 個⼈的にかなり⾯⽩いアイデア

その他

Cls. Det. Seg.

random 53.3 43.4 19.8
LC 67.7 51.4 36.6
JP 67.7 53.2 —
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Figure 3: Average response of our trained network on

the ImageNet validation set. Despite its sparsity (30 non
zero entries), the hidden representation in the trained net-
work performs well when transferred to the classification,
detection and segmentation tasks.

will push features towards counting as many primitives as
is needed to differentiate images from each other.
Network architecture. In principle, the choice of the ar-
chitecture is arbitrary. For ease of comparison with state-
of-the-art methods when transferring to classification and
detection tasks, we adopt the AlexNet architecture [20] as
commonly done in other self-supervised learning methods.
We use the first 5 convolutional layers from AlexNet fol-
lowed by three fully connected layers ((3×3×256)×4096,
4096× 4096, and 4096× 1000), and ReLU units. Note that
1000 is the number of elements that we want to count. We
use ReLU in the end since we want the counting vector to be
all positive. Our input is 114× 114 pixels to handle smaller
tiles. Because all the features are the same, training with
the loss function in eq. 4 is equivalent to training a 6-way
siamese network, as shown in Fig. 2.

5. Experiments

We first present the evaluations of our learned represen-
tation in the standard transfer learning benchmarks. Then,
we perform ablation studies on our proposed method to
show quantitatively the impact of our techniques to prevent
poor representations. Finally, we analyze the learned repre-
sentation through some quantitative and qualitative experi-
ments to get a better insight into what has been learned. We
call the activation of the last layer of our network, on which
the loss (4) is defined, the counting vector. We evaluate
whether each unit in the counting vector is counting some
visual primitive or not. Our model is based on AlexNet [20]
in all experiments. In our tables we use boldface for the top
performer and underline the second top performer.
Implementation Details. We use caffe [18] with the de-
fault weight regularization settings to train our network.
The learning rate is set to be quite low to avoid divergence.
We begin with a learning rate of 10−4 and drop it by a fac-
tor of 0.9 every 10K iterations. An important step is to nor-
malize the input by subtracting the mean intensity value and
dividing the zero-mean images by their standard deviation.

Method Ref Class. Det. Segm.

Supervised [20] [43] 79.9 56.8 48.0
Random [33] 53.3 43.4 19.8

Context [9] [19] 55.3 46.6 -
Context [9]∗ [19] 65.3 51.1 -
Jigsaw [30] [30] 67.6 53.2 37.6
ego-motion [1] [1] 52.9 41.8 -
ego-motion [1]∗ [1] 54.2 43.9 -
Adversarial [10]∗ [10] 58.6 46.2 34.9
ContextEncoder [33] [33] 56.5 44.5 29.7
Sound [31] [44] 54.4 44.0 -
Sound [31]∗ [44] 61.3 - -
Video [41] [19] 62.8 47.4 -
Video [41]∗ [19] 63.1 47.2 -
Colorization [43]∗ [43] 65.9 46.9 35.6
Split-Brain [44]∗ [44] 67.1 46.7 36.0
ColorProxy [22] [22] 65.9 - 38.0
WatchingObjectsMove [32] [32] 61.0 52.2 -
Counting 67.7 51.4 36.6

Table 1: Evaluation of transfer learning on PASCAL.

Classification and detection are evaluated on PASCAL VOC
2007 in the frameworks introduced in [19] and [11] respec-
tively. Both tasks are evaluated using mean average pre-
cision (mAP) as a performance measure. Segmentation is
evaluated on PASCAL VOC 2012 in the framework of [26],
which reports mean intersection over union (mIoU). (*) de-
notes the use of the data initialization method [19].

5.1. Transfer Learning Evaluation

We evaluate our learned representation on the detec-

tion, classification, and segmentation tasks on the PASCAL

dataset as well as the classification task on the ImageNet

dataset. We train our counting network on the 1.3M im-
ages from the training set of ImageNet. We use images of
114×114 pixels as input. Since we transfer only the convo-
lutional layers, it has no effect on the transferred models and
evaluation. A new version of [29] has been released [30],
where the standard AlexNet is used for transfer learning.
All the numbers in our comparisons are from that version.

5.1.1 Fine-tuning on PASCAL

In this set of experiments, we fine-tune our network on
the PASCAL VOC 2007 and VOC 2012 datasets, which
are standard benchmarks for representation learning. Fine-
tuning is based on established frameworks for object clas-
sification [19], detection [11] and segmentation [26] tasks.
The classification task is a multi-class classification prob-
lem, which predicts the presence or absence of 20 object
classes. The detection task involves locating objects by
specifying a bounding box around them. Segmentation as-
signs the label of an object class to each pixel in the im-
age. As shown in Table 1, we either outperform previous
methods or achieve the second best performance. Notice

5901

特徴量がprimitiveのヒストグラムのようなものになる

Noroozi et al., “Representation Learning by Learning to Count”, ICCV 2017.

同じ⼈

(~ CVPR2018)
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n Noise as target (NAT) 
➤ Pretext task : ⼀様にサンプリングされたtarget vectorsに各画像からの出⼒
を1対1に対応させ，近づける
- Targetは全体サンプルの誤差の和が最⼩になるように割り当てたい
- 全⾛査は厳しいのでバッチごとにハンガリアン法で近似的に割り当て

➤ ⼀⾒意味不明．画像の特徴ベクトルを特徴空間上に⼀様に分散させること
に意味があるらしい

その他

Cls. Det. Seg.

random 53.3 43.4 19.8
NAT 65.3 49.4 36.6
JP 67.7 53.2 —

Bojanowski et al., “Unsupervised Learning by Predicting Noise”, ICML 2017.

Unsupervised Learning by Predicting Noise

Target space

Features AssignmentImages

cj

Pf(X)

CNN

Figure 1. Our approach takes a set of images, computes their deep
features with a convolutional network and matches them to a set of
predefined targets from a low dimensional space. The parameters
of the network are learned by aligning the features to the targets.

3. Method
In this section, we present our model and discuss its re-
lations with several clustering approaches including k-
means. Figure 1 shows an overview of our approach. We
also show that it can be trained on massive datasets using
an online procedure. Finally, we provide all the implemen-
tation details.

3.1. Unsupervised learning

We are interested in learning visual features with no su-
pervision. These features are produced by applying a
parametrized mapping f✓ to the images. In the presence
of supervision, the parameters ✓ are learned by minimiz-
ing a loss function between the features produced by this
mapping and some given targets, e.g., labels. In absence of
supervision, there is no clear target representations and we
thus need to learn them as well. More precisely, given a
set of n images xi, we jointly learn the parameters ✓ of the
mapping f✓, and some target vectors yi:

min

✓

1

n

nX

i=1

min

yi2Rd
`(f✓(xi), yi), (1)

where d is the dimension of target vectors. In the rest of
the paper, we use matrix notations, i.e., we denote by Y the
matrix whose rows are the target representations yi, and by
X the matrix whose rows are the images xi. With a slight
abuse of notation, we denote by f✓(X) the n⇥ d matrix of
features whose rows are obtained by applying the function
f✓ to each image independently.

Choosing the loss function. In the supervised setting, a
popular choice for the loss ` is the softmax function. How-
ever, computing this loss is linear in the number of targets,
making it impractical for large output spaces (Goodman,
2001). While there are workarounds to scale these losses to
large output spaces, Tygert et al. (2017) has recently shown
that using a squared `2 distance works well in many su-
pervised settings, as long as the final activations are unit
normalized. This loss only requires access to a single tar-
get per sample, making its computation independent of the
number of targets. This leads to the following problem:

min

✓
min

Y 2Rn⇥d

1

2n
kf✓(X)� Y k2F , (2)

where we still denote by f✓(X) the unit normalized fea-
tures.

Using fixed target representations. Directly solving the
problem defined in Eq. (2) would lead to a representation
collapsing problem: all the images would be assigned to
the same representation (Xu et al., 2004). We avoid this
issue by fixing a set of k predefined target representations
and matching them to the visual features. More precisely,
the matrix Y is defined as the product of a matrix C con-
taining these k representations and an assignment matrix P
in {0, 1}n⇥k, i.e.,

Y = PC. (3)

Note that we can assume that k is greater than n with
no loss of generality (by duplicating representations oth-
erwise). Each image is assigned to a different target and
each target can only be assigned once. This leads to a set
P of constraints for the assignment matrices:

P = {P 2 {0, 1}n⇥k | P1k  1n, P
>
1n = 1k}. (4)

This formulation forces the visual features to be diversified,
avoiding the collapsing issue at the cost of fixing the target
representations. Predefining these targets is an issue if their
number k is small, which is why we are interested in the
case where k is at least as large as the number n of images.

Choosing the target representations. Until now, we
have not discussed the set of target representations stored
in C. A simple choice for the targets would be to take
k elements of the canonical basis of Rd. If d is larger
than n, this formulation would be similar to the framework
of Dosovitskiy et al. (2014), and is impractical for large
n. On the other hand, if d is smaller than n, this formula-
tion is equivalent to the discriminative clustering approach
of Bach & Harchaoui (2007). Choosing such targets makes
very strong assumptions on the nature of the underlying
problem. Indeed, it assumes that each image belongs to a
unique class and that all classes are orthogonal. While this
assumption might be true for some classification datasets, it

データ数分，⼀様分布から
サンプリング(固定)

Unsupervised Learning by Predicting Noise

Figure 3. Images and their 3 nearest neighbors in ImageNet according to our model using an `2 distance. The query images are shown on
the top row, and the nearest neighbors are sorted from the closer to the further. Our features seem to capture global distinctive structures.

Figure 4. Filters form the first layer of an AlexNet trained on Im-
ageNet with supervision (left) or with NAT (right). The filters
are in grayscale, since we use grayscale gradient images as input.
This visualization shows the composition of the gradients with the
first layer.

tures. Given a query image x, we compute its feature f✓(x)
and search for its nearest neighbors according to the `2 dis-
tance. Figure 3 shows images and their nearest neighbors.

The features capture relatively complex structures in im-
ages. Objects with distinctive structures, like trunks or
fruits, are well captured by our approach. However, this
information is not always related to true labels. For exam-
ple, the image of bird over the sea is matched to images
capturing information about the sea or the sky rather than

the bird.

4.2. Comparison with the state of the art

We report results on the transfer task both on ImageNet and
PASCAL VOC 2007. In both cases, the model is trained on
ImageNet.

ImageNet classification. In this experiment, we evaluate
the quality of our features for the object classification task
of ImageNet. Note that in this setup, we build the unsuper-
vised features on images that correspond to predefined im-
age categories. Even though we do not have access to cat-
egory labels, the data itself is biased towards these classes.
In order to evaluate the features, we freeze the layers up
to the last convolutional layer and train the classifier with
supervision. This experimental setting follows Noroozi &
Favaro (2016).

We compare our model with several self-supervised ap-
proaches (Wang & Gupta, 2015; Doersch et al., 2015;
Zhang et al., 2016) and an unsupervised approach,
i.e., Donahue et al. (2016). Note that self-supervised ap-
proaches use losses specifically designed for visual fea-
tures. Like BiGANs (Donahue et al., 2016), NAT does not
make any assumption about the domain but of the struc-
ture of its features. Table 3 compares NAT with these ap-
proaches.

Among unsupervised approaches, NAT compares favor-
ably to BiGAN (Donahue et al., 2016). Interestingly, the
performance of NAT are slightly better than self-supervised

Nearest Neighbor
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n Instance Discrimination (ID)
➤ Pretext task : 各画像インスタンスを1つのクラスとした識別問題

- Logitを前iterの各画像特徴と⼊⼒画像特徴の内積とした時の
CrossEntropyを最⼩化

- 実際はクラス数が膨⼤のため，NCEを⽤いる
➤ 最適な状態としては各画像の特徴ベクトルが超球上にまばらに散るような
埋め込みになるはず
=> NATとかなり近いことをしていることになるはず（引⽤はなし）

その他

Cls. Det. Seg.

random 53.3 43.4 19.8
ID — 48.1 —
JP 67.7 53.2 —

Wu et al., “Unsupervised Feature Learning via Non-Parametric Instance Discrimination ”, CVPR 2018.

前iterの
各画像特徴

1-th image

2-th image

i-th image

n-1 th image

n-th image

CNN backbone

128D

2048D

128D

L2 normlow dim

Non-param
Softmax

Memory
Bank

(~ CVPR2018)

CVPR2018



cvpaper.challenge 23

n Spot Artifact (SA)
➤ Pretext task : 特徴マップ上で⽋損させた画像の補完

- ⽋損を補完するrepair layersとdiscriminator間で敵対的学習
- discriminatorが良い特徴表現を得ることを期待

➤ 表現学習をどの時点で打ち切るかが難しいはず
- 敵対的に学習するため，ただロスが下がれば
良い特徴を得ているというわけではない

- ⼀応，補完画像のクオリティで評価？

再構成系

Cls. Det. Seg.

random 53.3 43.4 19.8
SA 69.8 52.5 38.1
JP 67.7 53.2 —

Real/Corrupt

X + + + + +

Figure 2. The proposed architecture. Two autoencoders {E,D1, D2, D3, D4, D5} output either real images (top row) or images with

artifacts (bottom row). A discriminator C is trained to distinguish them. The corrupted images are generated by masking the encoded

feature φ(x) and then by using a repair network {R1, R2, R3, R4, R5} distributed across the layers of the decoder. The mask is also used

by the repair network to change only the dropped entries of the feature (see Figure 5 for more details). The discriminator and the repair

network (both shaded in blue) are trained in an adversarial fashion on the real/corrupt classification loss. The discriminator is also trained

to output the mask used to drop feature entries, so that it learns to localize all artifacts.

spatial domain (the mask is replicated along the channels);
3. A discriminator network C to classify x as real images
and x̂ as fake; we also train the discriminator to output the
mask Ω, so that it learns to localize all artifacts;
4. A repair network {R1, R2, R3, R4, R5} added to the
layers of one of the two decoder networks; the output of
a layer Ri is masked by Ω so that it affects only masked
features.

The repair network and the discriminator are trained
in an adversarial fashion on the real/corrupt classification
loss.

4. Learning to Spot Artifacts

Our main objective is to train a classifying network (the
discriminator) so that it learns an accurate distribution of
real images. Prior work [34] showed that a discriminator
trained to distinguish real from fake images develops fea-
tures with interesting abstraction capabilities. In our work
we build on this observation and exploit a way to control
the level of corruption of the fake images (see Sec. 4.1).
Thus, we train a classifier to discriminate between real and
corrupt images (see Sec. 4.3). As illustrated earlier on, by
solving this task we hope that the classifier learns features
suitable for other tasks such as object classification, detec-
tion and segmentation. In the next sections we describe our
model more in detail, and present the design choices aimed
at avoiding learning trivial features.

4.1. The Damage & Repair Network

In our approach we would like to be able to create corrupt
images that are not too unrealistic, otherwise, a classifier

(a) (b) (c) (d) (e)

Figure 3. Two examples of corrupt images obtained from our dam-

age & repair network. (a) shows two original images from the Im-

ageNet dataset. At the bottom-left corner of those images we show

the masks applied to the encoded feature φ(x). These masks drop

on average about 50% of the encoded feature. (b) shows the output

corrupt images. The repair network assists the decoder in inpaint-

ing texture that is only locally unnoticeable. However, at the global

scale the objects are no longer recognizable as valid instances. (c)

shows the output of the decoder when the repair network is not ac-

tive. In this case the artifacts are very visible and easy to detect by

exploiting low-level statistics. (d) shows the output of the decoder

when the repair network is not masked. The repair network is then

able to change the image more globally. This has a negative effect

on the discriminator as it fails to predict the mask. (e) shows an

example where the images are fed through the damage & repair

network twice. This results in even more artifacts than in (b).

could distinguish them from real images by detecting only
low-level statistics (e.g., unusual local texture patterns). At
the same time, we would like to have as much variability as
possible, so that a classifier can build a robust model of real
images.

To address the latter concern we randomly corrupt real
images of an existing dataset. To address the first con-
cern instead of editing images at the pixel-level, we cor-

2735

Repair layerを挟む

⽋損位置を推定

Wu et al., “Self-Supervised Feature Learning by 
Learning to Spot Artifacts ”, CVPR 2018.

⾚：corrupt，緑：real
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n Jigsaw Puzzle++
➤ Pretext task : 1~3パッチを他の画像のパッチに置き換えたJP

- ⾒れるパッチが少ない・他画像からのパッチを識別する必要がある
- 複数のクラスに属することがないようハミング距離を考慮して順列を選択
- 単純にpretext taskの難度が上がる

識別系

Cls. Det. Seg.

random 53.3 43.4 19.8
LC 67.7 51.4 36.6

JP++ 69.8 55.5 38.1
JP 67.7 53.2 —

group semantically similar images in the same cluster. Our
idea is to perform this clustering in the feature space and to
obtain the cluster assignments of each image in the dataset
as pseudo-labels. We then train a classifier network with the
target task architecture on the pseudo-labels to learn a novel
representation. We illustrate our pipeline in Figure 2 and
describe it here below.
(a) Self-Supervised Learning Pre-Training. Suppose that
we are given a pretext task, a model and a dataset. Our first
step in SSL is to train our model on the pretext task with the
given dataset (see Figure 2 (a)). Typically, the models of
choice are convolutional neural networks, and one consid-
ers as feature the output of some intermediate layer (shown
as a grey rectangle in Figure 2 (a)).
(b) Clustering. Our next step is to compute feature vec-
tors for all the unlabeled images in our dataset. Then, we
use the k-means algorithm with the Euclidean distance to
cluster the features (see Figure 2 (b)). Ideally, when per-
forming this clustering on ImageNet images, we want the
cluster centers to be aligned with object categories. In the
experiments, we typically use 2,000 clusters.
(c) Extracting Pseudo-Labels. The cluster centers com-
puted in the previous section can be considered as virtual
categories. Indeed, we can assign feature vectors to the
closest cluster center to determine a pseudo-label associ-
ated to the chosen cluster. This operation is illustrated in
Figure 2 (c). Notice that the dataset used in this operation
might be different from that used in the clustering step or in
the SSL pre-training.
(d) Cluster Classification. Finally, we train a simple clas-
sifier using the architecture of the target task so that, given
an input image (from the dataset used to extract the pseudo-
labels), predicts the corresponding pseudo-label (see Fig-
ure 2 (d)). This classifier learns a new representation in
the target architecture that maps images that were originally
close to each other in the pre-trained feature space to close
points.

4. The Jigsaw++ Pretext Task
Recent work [8, 33] has shown that deeper architec-

tures can help in SSL with PASCAL recognition tasks (e.g.,
ResNet). However, those methods use the same deep ar-
chitecture for both SSL and fine-tuning. Hence, they are
not comparable with previous methods that use a simpler
AlexNet architecture in fine-tuning. We are interested in
knowing how far one can improve the SSL pre-training of
AlexNet for PASCAL tasks. Since in our framework the
SSL task is not restricted to use the same architecture as in
the final supervised task, we can increase the difficulty of
the SSL task along with the capacity of the architecture and
still use AlexNet at the fine-tuning stage.

Towards this goal, we build on the method of Okanohara
et al. [24] to learn representations in the text domain. They

(a) (b)

(c) (d)

Figure 3: The Jigsaw++ task. (a) the main image. (b) a
random image. (c) a puzzle from the original formulation
of [21], where all tiles come from the same image. (d) a
puzzle in the Jigsaw++ task, where at most 2 tiles can come
from a random image.

replace a word at random in a sentence and train a model
to distinguish the original sentence from the corrupt one.
We combine this idea with the jigsaw [21] task by replacing
tiles in the image puzzle with a random tile from other im-
ages. We call this the Jigsaw++ task. The original pretext
task [21] is to find a reordering of tiles from a 3⇥ 3 grid of
a square region cropped from an image. In Jigsaw++, we
replace a random number of tiles in the grid (up to 2) with
(occluding) tiles from another random image (see Figure 3).
The number of occluding tiles (0, 1 or 2 in our experiments)
as well as their location are randomly selected. The occlud-
ing tiles make the task remarkably more complex. First,
the model needs to detect the occluding tiles and second,
it needs to solve the jigsaw problem by using only the re-
maining patches. To make sure we are not adding ambi-
guities to the task, we remove similar permutations so that
the minimum Hamming distance between any two permu-
tations is at least 3. In this way, there is a unique solution to
the jigsaw task for any number of occlusions in our training
setting. Our final training permutation set includes 701 per-
mutations, in which the average and minimum Hamming
distance is .86 and 3 respectively. In addition to applying
the mean and std normalization independently at each im-
age tile, we train the network 70% of the time on gray scale
images. In this way, we prevent the network from using
low level statistics to detect occlusions and solve the jig-

Noroozi et al., “Boosting Self-Supervised Learning via 
Knowledge Transfer ”, CVPR 2018.

同じ⼈
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n Classify Rotation (CR)
➤ Pretext task : 画像の回転推定

- 0°，90°，180°，270°の4クラス分類
- それ以上の細かい分類は回転後に補間が必要

=> artifactによるtrivial solutionの原因
➤ objectの回転⾓を推定するためにはobjectの⾼次な情報が必要
➤ ここまでの最⾼精度(Cls., Det. ) & 実装が最も簡単

識別系

Cls. Det. Seg.

random 53.3 43.4 19.8
CR 73.0 54.4 39.1

JP++ 69.8 55.5 38.1

Published as a conference paper at ICLR 2018
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Figure 2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet model F (.) to recognize the rotation that is applied to the image that it gets as input.
F

y(Xy⇤
) is the probability of rotation transformation y predicted by model F (.) when it gets as

input an image that has been transformed by the rotation transformation y

⇤.

to successfully predict the rotation of an image the ConvNet model must necessarily learn to localize
salient objects in the image, recognize their orientation and object type, and then relate the object
orientation with the dominant orientation that each type of object tends to be depicted within the
available images. In Figure 3b we visualize some attention maps generated by a model trained
on the rotation recognition task. These attention maps are computed based on the magnitude of
activations at each spatial cell of a convolutional layer and essentially reflect where the network
puts most of its focus in order to classify an input image. We observe, indeed, that in order for the
model to accomplish the rotation prediction task it learns to focus on high level object parts in the
image, such as eyes, nose, tails, and heads. By comparing them with the attention maps generated
by a model trained on the object recognition task in a supervised way (see Figure 3a) we observe
that both models seem to focus on roughly the same image regions. Furthermore, in Figure 4 we
visualize the first layer filters that were learnt by an AlexNet model trained on the proposed rotation
recognition task. As can be seen, they appear to have a big variety of edge filters on multiple
orientations and multiple frequencies. Remarkably, these filters seem to have a greater amount of
variety even than the filters learnt by the supervised object recognition task.

Absence of low-level visual artifacts: An additional important advantage of using image rotations
by multiples of 90 degrees over other geometric transformations, is that they can be implemented by
flip and transpose operations (as we will see below) that do not leave any easily detectable low-level
visual artifacts that will lead the ConvNet to learn trivial features with no practical value for the
vision perception tasks. In contrast, had we decided to use as geometric transformations, e.g., scale
and aspect ratio image transformations, in order to implement them we would need to use image
resizing routines that leave easily detectable image artifacts.

Well-posedness: Furthermore, human captured images tend to depict objects in an “up-standing”
position, thus making the rotation recognition task well defined, i.e., given an image rotated by 0,
90, 180, or 270 degrees, there is usually no ambiguity of what is the rotation transformation (with
the exception of images that only depict round objects). In contrast, that is not the case for the object
scale that varies significantly on human captured images.

Implementing image rotations: In order to implement the image rotations by 90, 180, and 270
degrees (the 0 degrees case is the image itself), we use flip and transpose operations. Specifically,

4

Gidaris et al., “Unsupervised Representation Learning by predicting Image Rotation”, ICLR 2018.
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n Classify Rotation (CR)
➤ データ構造に依存？
➤ 画像ドメインによっては低次な特徴で回転の推定が可能では？

- 実際にPlacesのシーン識別タスクでは奮わない
➤ 回転が定義できないような画像もあるはず

- 航空写真など

識別系

Gidaris et al., “Unsupervised Representation Learning by predicting Image Rotation”, ICLR 2018.

Published as a conference paper at ICLR 2018

Table 5: Task Generalization: ImageNet top-1 classification with linear layers. We compare
our unsupervised feature learning approach with other unsupervised approaches by training logistic
regression classifiers on top of the feature maps of each layer to perform the 1000-way ImageNet
classification task, as proposed by Zhang et al. (2016a). All weights are frozen and feature maps are
spatially resized (with adaptive max pooling) so as to have around 9000 elements. All approaches
use AlexNet variants and were pre-trained on ImageNet without labels except the ImageNet labels
and Random entries.

Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet labels 19.3 36.3 44.2 48.3 50.5

Random 11.6 17.1 16.9 16.3 14.1
Random rescaled Krähenbühl et al. (2015) 17.5 23.0 24.5 23.2 20.6

Context (Doersch et al., 2015) 16.2 23.3 30.2 31.7 29.6
Context Encoders (Pathak et al., 2016b) 14.1 20.7 21.0 19.8 15.5
Colorization (Zhang et al., 2016a) 12.5 24.5 30.4 31.5 30.3
Jigsaw Puzzles (Noroozi & Favaro, 2016) 18.2 28.8 34.0 33.9 27.1
BIGAN (Donahue et al., 2016) 17.7 24.5 31.0 29.9 28.0
Split-Brain (Zhang et al., 2016b) 17.7 29.3 35.4 35.2 32.8
Counting (Noroozi et al., 2017) 18.0 30.6 34.3 32.5 25.7

(Ours) RotNet 18.8 31.7 38.7 38.2 36.5

Table 6: Task & Dataset Generalization: Places top-1 classification with linear layers. We
compare our unsupervised feature learning approach with other unsupervised approaches by training
logistic regression classifiers on top of the feature maps of each layer to perform the 205-way Places
classification task (Zhou et al., 2014). All unsupervised methods are pre-trained (in an unsupervised
way) on ImageNet. All weights are frozen and feature maps are spatially resized (with adaptive max
pooling) so as to have around 9000 elements. All approaches use AlexNet variants and were pre-
trained on ImageNet without labels except the Place labels, ImageNet labels, and Random entries.

Method Conv1 Conv2 Conv3 Conv4 Conv5

Places labels Zhou et al. (2014) 22.1 35.1 40.2 43.3 44.6
ImageNet labels 22.7 34.8 38.4 39.4 38.7

Random 15.7 20.3 19.8 19.1 17.5
Random rescaled Krähenbühl et al. (2015) 21.4 26.2 27.1 26.1 24.0

Context (Doersch et al., 2015) 19.7 26.7 31.9 32.7 30.9
Context Encoders (Pathak et al., 2016b) 18.2 23.2 23.4 21.9 18.4
Colorization (Zhang et al., 2016a) 16.0 25.7 29.6 30.3 29.7
Jigsaw Puzzles (Noroozi & Favaro, 2016) 23.0 31.9 35.0 34.2 29.3
BIGAN (Donahue et al., 2016) 22.0 28.7 31.8 31.3 29.7
Split-Brain (Zhang et al., 2016b) 21.3 30.7 34.0 34.1 32.5
Counting (Noroozi et al., 2017) 23.3 33.9 36.3 34.7 29.6

(Ours) RotNet 21.5 31.0 35.1 34.6 33.7

classification tasks of ImageNet, Places, and PASCAL VOC datasets and on the object detection and
object segmentation tasks of PASCAL VOC.

Implementation details: For those experiments we implemented our RotNet model with an
AlexNet architecture. Our implementation of the AlexNet model does not have local response
normalization units, dropout units, or groups in the colvolutional layers while it includes batch
normalization units after each linear layer (either convolutional or fully connected). In order to train
the AlexNet based RotNet model, we use SGD with batch size 192, momentum 0.9, weight decay
5e � 4 and lr of 0.01. We drop the learning rates by a factor of 10 after epochs 10, and 20 epochs.
We train in total for 30 epochs. As in the CIFAR experiments, during training we feed the RotNet
model all four rotated copies of an image simultaneously (in the same mini-batch).
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Fig. 1. Image samples from various categories of the Places Database (two samples per category). The dataset
contains three macro-classes: Indoor, Nature, and Urban.

Fig. 2. Sorted distribution of image number per category in the Places Database. Places contains 10,624,928
images from 434 categories. Category names are shown for every 6 intervals.

The successes of Deep Blue in chess, Watson in “Jeop-
ardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6]–
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on
1.2 million object [10]–[12] and 2.5 million scene images
[1]. Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-centric Datasets

The first benchmark for scene recognition was the Scene15
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with
a few hundred images per class, and current classifiers are
saturated, reaching near human performance with 95%. The

MIT Indoor67 database [15] with 67 indoor categories and
the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage
of place categories, but failed short in term of quantity of
data needed to feed deep learning algorithms. To comple-
ment large object-centric datasets such as ImageNet [11],
we build the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the
earliest image dataset with diverse object annotations in
scene context. The Pascal VOC challenge has greatly ad-
vanced the development of models for object detection and
segmentation tasks. Nowadays, COCO dataset [18] focuses
on collecting object instances both in polygon and bounding
box annotations for images depicting everyday scenes of
common objects. The recent Visual Genome dataset [19]
aims at collecting dense annotations of objects, attributes,
and their relationships. ADE20K [20] collects precise dense
annotation of scenes, objects, parts of objects with a large
and open vocabulary. Altogether, annotated datasets further
enable artificial systems to learn visual knowledge linking
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The successes of Deep Blue in chess, Watson in “Jeop-
ardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6]–
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on
1.2 million object [10]–[12] and 2.5 million scene images
[1]. Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-centric Datasets

The first benchmark for scene recognition was the Scene15
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with
a few hundred images per class, and current classifiers are
saturated, reaching near human performance with 95%. The

MIT Indoor67 database [15] with 67 indoor categories and
the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage
of place categories, but failed short in term of quantity of
data needed to feed deep learning algorithms. To comple-
ment large object-centric datasets such as ImageNet [11],
we build the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the
earliest image dataset with diverse object annotations in
scene context. The Pascal VOC challenge has greatly ad-
vanced the development of models for object detection and
segmentation tasks. Nowadays, COCO dataset [18] focuses
on collecting object instances both in polygon and bounding
box annotations for images depicting everyday scenes of
common objects. The recent Visual Genome dataset [19]
aims at collecting dense annotations of objects, attributes,
and their relationships. ADE20K [20] collects precise dense
annotation of scenes, objects, parts of objects with a large
and open vocabulary. Altogether, annotated datasets further
enable artificial systems to learn visual knowledge linking
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The successes of Deep Blue in chess, Watson in “Jeop-
ardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6]–
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on
1.2 million object [10]–[12] and 2.5 million scene images
[1]. Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-centric Datasets

The first benchmark for scene recognition was the Scene15
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with
a few hundred images per class, and current classifiers are
saturated, reaching near human performance with 95%. The

MIT Indoor67 database [15] with 67 indoor categories and
the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage
of place categories, but failed short in term of quantity of
data needed to feed deep learning algorithms. To comple-
ment large object-centric datasets such as ImageNet [11],
we build the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the
earliest image dataset with diverse object annotations in
scene context. The Pascal VOC challenge has greatly ad-
vanced the development of models for object detection and
segmentation tasks. Nowadays, COCO dataset [18] focuses
on collecting object instances both in polygon and bounding
box annotations for images depicting everyday scenes of
common objects. The recent Visual Genome dataset [19]
aims at collecting dense annotations of objects, attributes,
and their relationships. ADE20K [20] collects precise dense
annotation of scenes, objects, parts of objects with a large
and open vocabulary. Altogether, annotated datasets further
enable artificial systems to learn visual knowledge linking
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Fig. 1. Image samples from various categories of the Places Database (two samples per category). The dataset
contains three macro-classes: Indoor, Nature, and Urban.

Fig. 2. Sorted distribution of image number per category in the Places Database. Places contains 10,624,928
images from 434 categories. Category names are shown for every 6 intervals.

The successes of Deep Blue in chess, Watson in “Jeop-
ardy!”, and AlphaGo in Go against their expert human
opponents may thus be seen as not just advances in algo-
rithms, but the increasing availability of very large datasets:
700,000, 8.6 million, and 30 million items, respectively [6]–
[8]. Convolutional Neural Networks [3], [9] have likewise
achieved near human-level visual recognition, trained on
1.2 million object [10]–[12] and 2.5 million scene images
[1]. Expansive coverage of the space of classes and samples
allows getting closer to the right ecosystem of data that a
natural system, like a human, would experience. The history
of image datasets for scene recognition also sees the rapid
growing in the image samples as follows.

1.2 Scene-centric Datasets

The first benchmark for scene recognition was the Scene15
database [13], extended from the initial 8 scene dataset in
[14]. This dataset contains only 15 scene categories with
a few hundred images per class, and current classifiers are
saturated, reaching near human performance with 95%. The

MIT Indoor67 database [15] with 67 indoor categories and
the SUN (Scene Understanding, with 397 categories and
130,519 images) database [16] provided a larger coverage
of place categories, but failed short in term of quantity of
data needed to feed deep learning algorithms. To comple-
ment large object-centric datasets such as ImageNet [11],
we build the Places dataset described here.

Meanwhile, the Pascal VOC dataset [17] is one of the
earliest image dataset with diverse object annotations in
scene context. The Pascal VOC challenge has greatly ad-
vanced the development of models for object detection and
segmentation tasks. Nowadays, COCO dataset [18] focuses
on collecting object instances both in polygon and bounding
box annotations for images depicting everyday scenes of
common objects. The recent Visual Genome dataset [19]
aims at collecting dense annotations of objects, attributes,
and their relationships. ADE20K [20] collects precise dense
annotation of scenes, objects, parts of objects with a large
and open vocabulary. Altogether, annotated datasets further
enable artificial systems to learn visual knowledge linking

Places

例えば，空の位置のみで
回転推定できる

(~ CVPR2018)
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Method Conference Classification
(%mAP)

Detection
(%mAP)

Segmentation
(%mIoU)

Random init. — 53.3 43.4 19.8
Context prediction ICCV15 55.3 46.6 —
Context encoder CVPR16 56.5 44.5 29.7

Colorize ECCV16 65.9 46.9 35.6
Jigsaw ECCV16 67.7 53.2 —

Split-Brain CVPR17 67.1 46.7 36.0
NAT ICML17 65.3 49.4 36.6

Counting ICCV17 67.7 51.4 36.6
Rotation ICLR18 73.0 54.4 39.1

Spot Artifact CVPR18 69.8 52.5 38.1
Instance Dis. CVPR18 — 48.1 —

Jigsaw++ CVPR18 69.8 55.5 38.1
Supervised — 79.9 59.1 48.0

⽐較
{Self, Un}-supervised learning on ImageNet => Fine-tuing on Pascal VOC2007
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Method Conference Classification
(%mAP)

Detection
(%mAP)

Segmentation
(%mIoU)

Random init. — 53.3 43.4 19.8
Context prediction ICCV15 55.3 46.6 —
Context encoder CVPR16 56.5 44.5 29.7

Colorize ECCV16 65.9 46.9 35.6
Jigsaw ECCV16 67.7 53.2 —

Split-Brain CVPR17 67.1 46.7 36.0
NAT ICML17 65.3 49.4 36.6

Counting ICCV17 67.7 51.4 36.6
Rotation ICLR18 73.0 54.4 39.1

Spot Artifact CVPR18 69.8 52.5 38.1
Instance Dis. CVPR18 — 48.1 —

Jigsaw++ CVPR18 69.8 55.5 38.1
Deep Cluster ECCV18 73.7 55.4 45.1
Supervised — 79.9 59.1 48.0

⽐較
{Self, Un}-supervised learning on ImageNet => Fine-tuing on Pascal VOC2007



さらに最新の動向
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n Deep Cluster (DC)
➤ 以下の操作を繰り返し⾏う

① CNNの中間特徴を元にk-meansクラスタリング
② 割り当てられたクラスタをPseudo labelとして識別問題を学習

➤ 最初のiterationではランダム初期化されたCNNの出⼒を元にクラスタリング
- その出⼒を⽤いてMLPを学習しても12%出る => ⼊⼒情報はある程度保持されてる

➤ ImageNetでの実験ではk = 10000 (> 1000)が最も良い
➤ 単純かつ⾮常に強⼒な⼿法

最新動向

Caron et al., “Deep Clustering for Unsupervised Learning of Visual Features ”, ECCV 2018.

Cls. Det. Seg.

random 53.3 43.4 19.8
CR 73.0 54.4 39.1

JP++ 69.8 55.5 38.1
DC 73.7 55.4 45.1
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n Deep Cluster (DC)
➤ 以下の操作を繰り返し⾏う

① CNNの中間特徴を元にk-meansクラスタリング
② 割り当てられたクラスタをPseudo labelとして識別問題を学習

➤ 最初のiterationではランダム初期化されたCNNの出⼒を元にクラスタリング
- その出⼒を⽤いてMLPを学習しても12%出る => ⼊⼒情報はある程度保持されてる

➤ ImageNetでの実験ではk = 10000 (> 1000)が最も良い
➤ 単純かつ⾮常に強⼒な⼿法

最新動向

Caron et al., “Deep Clustering for Unsupervised Learning of Visual Features ”, ECCV 2018.

Cls. Det. Seg.

random 53.3 43.4 19.8
CR 73.0 54.4 39.1

JP++ 69.8 55.5 38.1
DC 73.7 55.4 45.1

Deep Clustering for Unsupervised Learning of Visual Features 7

(a) Clustering quality (b) Cluster reassignment (c) Influence of k

Fig. 2: Preliminary studies. (a): evolution of the clustering quality along train-
ing epochs; (b): evolution of cluster reassignments at each clustering step; (c):
validation mAP classification performance for various choices of k.

mentation which is useful for feature learning [33]. The network is trained with
dropout [62], a constant step size, an `2 penalization of the weights ✓ and a mo-
mentum of 0.9. Each mini-batch contains 256 images. For the clustering, features
are PCA-reduced to 256 dimensions, whitened and `2-normalized. We use the
k-means implementation of Johnson et al . [60]. Note that running k-means takes
a third of the time because a forward pass on the full dataset is needed. One
could reassign the clusters every n epochs, but we found out that our setup on
ImageNet (updating the clustering every epoch) was nearly optimal. On Flickr,
the concept of epoch disappears: choosing the tradeo↵ between the parameter
updates and the cluster reassignments is more subtle. We thus kept almost the
same setup as in ImageNet. We train the models for 500 epochs, which takes 12
days on a Pascal P100 GPU for AlexNet.

Hyperparameter selection. We select hyperparameters on a down-stream
task, i.e., object classification on the validation set of Pascal VOC with no
fine-tuning. We use the publicly available code of Krähenbühl1.

4 Experiments

In a preliminary set of experiments, we study the behavior of DeepCluster dur-
ing training. We then qualitatively assess the filters learned with DeepCluster
before comparing our approach to previous state-of-the-art models on standard
benchmarks.

1 https://github.com/philkr/voc-classification

ImageNet labelとクラスタの
相互情報量が増加していく

epoch間の相互情報量が増加
=> クラスタ割り当てが安定
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n Deep INFORMAX (DIM)
➤ ⼊⼒𝒙と特徴ベクトル𝒛の相互情報量𝐼(𝒙; 𝒛)を最⼤化するように学習

- 簡単に⾔うと𝒙と𝒛の依存を⼤きくする
- 実際には𝒛と𝒙の各パッチの相互情報量最⼤化が⼤きな効果を発揮

➤ 𝒙, 𝒛 のpositive or negativeペアの識別をするdiscriminatorをつけて
end-to-endに学習するだけで𝑰(𝒙; 𝒛)の下限を最⼤化することができる

➤ GANのような交互最適化でもないので，実装・学習が簡単
➤ 全ての⼿法との⽐較はしていないが教師あり学習に近い精度

最新動向

Devon Hajelm et al., “Learning deep representations by mutual information estimation and maximization”, arXiv 8/2018.

Figure 1: The base encoder model in the
context of image data. An image (in this
case) is encoded into a convolutional network
until reaching a feature map of M ⇥ M fea-
ture vectors corresponding to M ⇥ M input
patches. These vectors are summarized (for
instance, using additional convolutions and
fully-connected layers) into a single feature
vector, Y . Our goal is to train this network
such that relevant information about the input
is extractable from the high-level features.

Figure 2: Deep INFOMAX (DIM) with a
global MI(X; Y ) objective. Here, we pass
both the high-level feature vector, Y , and the
lower-level M ⇥ M feature map (See Fig-
ure 1) through a discriminator composed of
additional convolutions, flattening, and fully-
connected layers to get the score. Fake sam-
ples are drawn by combining the same feature
vector with a M ⇥ M feature map from an-
other image.

3 Deep INFOMAX

3.1 Encoder and DIM objective

Here we outline the general setting of training an encoder to maximize mutual information between
its input and output. Let X and Y be the domain and range of a continuous and (almost everywhere)
differentiable parametric function, E : X ! Y with parameters  (e.g., a neural network). These
parameters define a family of encoders, E� = {E }�2� over �. Let us assume that we are given
a set of training examples on an input space, X : X := {x(i) 2 X}Ni=1, with empirical probability
distribution, P. We can define U ,P = E #P to be the marginal push-forward distribution (Bottou
et al., 2017) induced by pushing samples from P through E , as well as the joint and the product of
marginals:

U ,P(Y = y) := P({x(i) 2 X | E (x

(i)
) = y}),

J ,P(X = x, Y = y) := P(X = x)�y(E (x)),

M ,P(X = x, Y = y) := P(X = x)P({x(i) 2 X | E (x

(i)
) = y}), (2)

where �y(E (x)) is the Dirac measure on Y .

An example encoder for image data is given in Figure 1, which will be used in the following sections,
but our formulation can easily be adapted for temporal data. Similar to the INFOMAX optimization
principle (Linsker, 1988), we assert that our encoder should be trained according to the following
objectives:

• Mutual information maximization: Find the set of parameters,  , such that the mutual
information, I(X; E (X)), is maximized. Depending on the end-goal, this maximization
can be done over the complete input, X , or some local subset.

• Structural constraints: Depending on the end-goal for the representation, the marginal
U ,P should match a prior distribution, V.

The formulation of these two objectives covered below we call Deep INFOMAX (DIM).

4

Table 2: Classification accuracy (top 1) results on Tiny ImageNet and STL-10. For Tiny ImageNet,
DIM with the local objective outperforms all other models presented by a large margin, and approaches
accuracy of a fully-supervised classifier with similar with the Alexnet architecture used here.

Tiny ImageNet STL-10 (random crop pretraining)
conv fc (4096) Y (64) conv fc (4096) Y (64) SS

Fully supervised 36.60 68.7
VAE 18.63 16.88 11.93 58.27 56.72 46.47 68.65

AAE 18.04 17.27 11.49 59.54 54.47 43.89 64.15

BiGAN 24.38 20.21 13.06 71.53 67.18 58.48 74.77

NAT 13.70 11.62 1.20 64.32 61.43 48.84 70.75

DIM(G) 11.32 6.34 4.95 42.03 30.82 28.09 51.36

DIM(L) 33.8 34.5 30.7 71.82 67.22 61.61 75.62

Table 3: Extended comparisons on CIFAR10. Linear classification results using SVM are over five
runs. MS-SSIM is estimated by training a separate decoder using the fixed representation as input and
minimizing the L2 loss with the original input. Mutual information estimates were done using MINE
and the neural dependence measure (NDM) were trained using a discriminator between unshuffled
and shuffled representations. NDM measures for DIM are the measures with the sigmoid function
applied at estimation and without in parentheses.

Model Proxies Neural Estimators
SVM (conv) SVM (fc) SVM (Y ) MS-SSIM b

I⇢(X, Y ) NDM
VAE 53.83 ± 0.62 42.14 ± 3.69 39.59 ± 0.01 0.72 93.02 1.62
AAE 55.22 ± 0.06 43.34 ± 1.10 37.76 ± 0.18 0.67 87.48 0.03
BiGAN 56.40 ± 1.12 38.42 ± 6.86 44.90 ± 0.13 0.46 37.69 24.49
NAT 48.62 ± 0.02 42.63 ± 3.69 39.59 ± 0.01 0.29 6.04 0.02
DIM(G) 46.8 ± 2.29 28.79 ± 7.29 29.08 ± 0.24 0.49 49.63 0.35(9.96)

DIM(L+G) 57.55 ± 1.442 45.56 ± 4.18 18.63 ± 4.79 0.53 101.65 0.5(22.89)

DIM(L) 63.25 ± 0.86 54.06 ± 3.6 49.62 ± 0.3 0.37 45.09 0.18(9.18)

On STL-10, we found that all models performed better without random cropping (using re-scaling
instead) during classification evaluation, though we found data augmentation was important for
pretraining. Because of this we used the same decaying learning rate schedule to avoid over-fitting
with the same model selection as previous experiments. DIM(L) outperformed all models on all tasks
by a large margin, except with BiGAN (which on some tasks it only outperforms by an insignificant
amount). This supports our the hypothesis that our local DIM objective is suitable for extracting class
information.

Extended comparisons Tables 3 shows results on linear separability, reconstruction (MS-SSIM),
mutual information, and independence (NDM) with the CIFAR10 dataset. For linear classifier results
(SVC), we trained five support vector machines with a simple hinge loss for each model, averaging the
test accuracy. For MINE, we used a decaying learning rate schedule, which helped reduce variance in
estimates and provided faster convergence.

The MS-SSIM measure of reconstruction correlated well with the mutual information estimate
provided by MINE, indicating that these models encoded pixel-wise information well. As our prior
matching was done using a sigmoid function on the representation, Y , we measured NDM with and
without (in parentheses) this nonlinearity. Overall, all models showed much lower dependence than
BiGAN, indicating the marginal of the encoder output is not matching to the generator’s spherical
Gaussian input prior. For mutual information, reconstruction-based models like VAE and AAE
have high scores, and we found that combining local and global objectives had very high scores
(↵ = 0.5, � = 0.1 is presented here as DIM(L+G), see ablation study below for details). NAT
showed the lowest mutual information and reconstruction measures, indicating that information about
the pixels is not readily encoded by NAT. We note here as well that classification performance usually
anti-correlates with reconstruction performance in this setting, with some exceptions.
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Tiny ImageNetにおいて教師ありに近い精度
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n Contrastive Predictive Coding (CPC)
➤ 系列情報においてある時点での特徴ベクトル𝑐4と先の⼊⼒𝑥45+間の
相互情報量を最⼤化

➤ こちらはdiscriminatorがN個のペアから1つのpositiveペアを識別するNクラス
分類を解くことで相互情報量の下界を最⼤化

➤ 画像の場合は図のように系列を特徴マップの上から下の⽅向として捉える
➤ 全ての⼿法との⽐較はしていないが実験内では圧倒的な精度

最新動向

Oord et al., “Representation Learning with Contrastive Predictive Coding”, arxiv 6/2018.
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Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure 1).

To understand the representations extracted by CPC, we measure the phone prediction performance
with a linear classifier trained on top of these features, which shows how linearly separable the
relevant classes are under these features. We extract the outputs of the GRU (256 dimensional), i.e.
c

t

, for the whole dataset after model convergence and train a multi-class linear logistic regression
classifier. The results are shown in Table 1 (top). We compare the accuracy with three baselines:
representations from a random initialized model (i.e., g

enc

and g

ar

are untrained), MFCC features,
and a model that is trained end-to-end supervised with the labeled data. These two models have the
same architecture as the one used to extract the CPC representations. The fully supervised model
serves as an indication for what is achievable with this architecture. We also found that not all the
information encoded is linearly accessible. When we used a single hidden layer instead the accuracy
increases from 64.6 to 72.5, which is closer to the accuracy of the fully supervised model.

Table 2 gives an overview of two ablation studies of CPC for phone classification. In the first set
we vary the number of steps the model predicts showing that predicting multiple steps is important
for learning useful features. In the second set we compare different strategies for drawing negative
sample, all predicting 12 steps (which gave the best result in the first ablation). In the mixed speaker
experiment the negative samples contain examples of different speakers (first row), in contrast to
same speaker experiment (second row). In the third and fourth experiment we exclude the current
sequence to draw negative samples from (so only other examples in the minibatch are present in X)
and in the last experiment we only draw negative samples within the sequence (thus all samples are
from the same speaker).

Beyond phone classification, Table 1 (bottom) shows the accuracy of performing speaker identity
(out of 251) with a linear classifier from the same representation (we do not average utterances over
time). Interestingly, CPCs capture both speaker identity and speech contents, as demonstrated by
the good accuracies attained with a simple linear classifier, which also gets close to the oracle, fully
supervised networks.

Additionally, Figure 2 shows a t-SNE visualization [32] of how discriminative the embeddings are
for speaker voice-characteristics. It is important to note that the window size (maximum context size
for the GRU) has a big impact on the performance, and longer segments would give better results.
Our model had a maximum of 20480 timesteps to process, which is slightly longer than a second.

3.2 Vision

In our visual representation experiments we use the ILSVRC ImageNet competition dataset [33].
The ImageNet dataset has been used to evaluate unsupervised vision models by many authors
[27, 11, 34, 10, 28, 35]. We follow the same setup as [35] and use a ResNet v2 101 architecture [36]
as the image encoder g

enc

to extract CPC representations (note that this encoder is not pretrained).
We did not use Batch-Norm [37]. After unsupervised training, a linear layer is trained to measure
classification accuracy on ImageNet labels.
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Method Top-1 ACC

Using AlexNet conv5
Video [27] 29.8
Relative Position [11] 30.4
BiGan [34] 34.8
Colorization [10] 35.2
Jigsaw [28] * 38.1

Using ResNet-V2
Motion Segmentation [35] 27.6
Exemplar [35] 31.5
Relative Position [35] 36.2
Colorization [35] 39.6
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of
architectural differences.

Method Top-5 ACC

Motion Segmentation (MS) 48.3
Exemplar (Ex) 53.1
Relative Position (RP) 59.2
Colorization (Col) 62.5
Combination of

MS + Ex + RP + Col 69.3
CPC 73.6

Table 4: ImageNet top-5 unsupervised classi-
fication results. Previous results with MS, Ex,
RP and Col were taken from [35] and are the
best reported results on this task.

Method MR CR Subj MPQA TREC

Paragraph-vector [39] 74.8 78.1 90.5 74.2 91.8
Skip-thought vector [25] 75.5 79.3 92.1 86.9 91.4
Skip-thought + LN [40] 79.5 82.6 93.4 89.0 -

CPC 76.9 80.1 91.2 87.7 96.8

Table 5: Classification accuracy on five common NLP benchmarks. We follow the same transfer
learning setup from Skip-thought vectors [25] and use the BookCorpus dataset as source. [39] is an
unsupervised approach to learning sentence-level representations. [25] is an alternative unsupervised
learning approach. [40] is the same skip-thought model with layer normalization trained for 1M
iterations.

Our model consists of a simple sentence encoder g

enc

(a 1D-convolution + ReLU + mean-pooling)
that embeds a whole sentence into a 2400-dimension vector z, followed by a GRU (2400 hidden
units) which predicts up to 3 future sentence embeddings with the contrastive loss to form c. We used
Adam optimizer with a learning rate of 2e-4 trained on 8 GPUs, each with a batch size of 64. We
found that more advanced sentence encoders did not significantly improve the results, which may be
due to the simplicity of the transfer tasks (e.g., in MPQA most datapoints consists of one or a few
words), and the fact that bag-of-words models usually perform well on many NLP tasks [47].

Results on evaluation tasks are shown in Table 5 where we compare our model against other models
that have been used using the same datasets. The performance of our method is very similar to the
skip-thought vector model, with the advantage that it does not require a powerful LSTM as word-level
decoder, therefore much faster to train. Although this is a standard transfer learning benchmark, we
found that models that learn better relationships in the childeren books did not necessarily perform
better on the target tasks (which are very different: movie reviews etc). We note that better [48, 26]
results have been published on these target datasets, by transfer learning from a different source task.

3.4 Reinforcement Learning

Finally, we evaluate the proposed unsupervised learning approach on five reinforcement learn-
ing in 3D environments of DeepMind Lab [50]: rooms_watermaze, explore_goal_locations_small,
seekavoid_arena_01, lasertag_three_opponents_small and rooms_keys_doors_puzzle.

This setup differs from the previous three. Here, we take the standard batched A2C [51] agent as
base model and add CPC as an auxiliary loss. We do not use a replay buffer, so the predictions have
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n CVPR2018まで
➤ アイデアベースで多様な⼿法が発表されてきた（お蔵⼊もたくさんあったはず）
➤ 画像のデータ構造に着⽬したSelf-supervised learningが精度的にも優位だった

（Rotation, Jigsaw…）
n 現在の動き

➤ データ構造に依存しない⼿法がうまくいきはじめた（Deep Cluster,相互情報量に
着⽬したアプローチ）

➤ データ構造に依存した⼿法は画像データのドメインによってうまくいくかが左右
される考え（rotation on Placesの結果参照）（持論）

n 今後の展望
➤ ⼿法的な展望

- データ構造に依存しない⼿法がさらに発展（具体的には想像がつかない）
- データ構造に{依存した＋依存しない}⼿法（Rotation + Deep Cluster）

➤ 研究領域としての展望
- 打倒教師あり学習（ImageNet pretrainedを超える）
- Task-specificな教師なし学習 (現在もありますが…)
こちらの⽅がデータ構造に着⽬するself-supervised learningと相性が良さそう
に感じる

まとめ
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n 実⽤として
➤ 学習済みモデルとしてはImageNet pretrained modelを使⽤すれ
ば良い⾵潮

➤ しかし，ImageNet pretrained modelが有効でない場合もある
- 画像のドメインが⼤きく異なる場合

➤ そういった条件では実⽤段階
- 特に実装が簡単なDeep Clusterなど

➤ 条件によっては半教師あり学習と競合する場合も
- 教師なしデータ＋教師ありデータ

まとめ



ありがとうございました


