

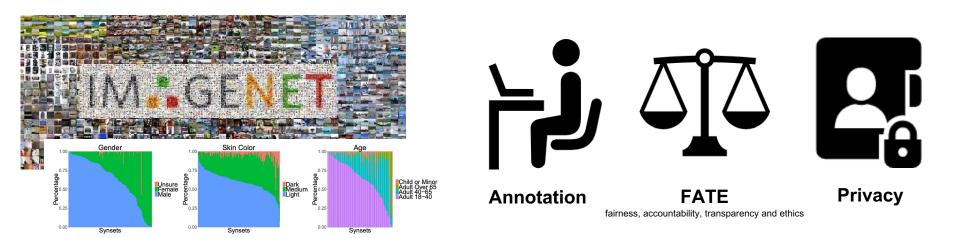
Formula-driven Supervised Learning with Recursive Tiling Patterns

Hirokatsu Kataoka¹, Asato Matsumoto¹, Eisuke Yamagata²,

Ryosuke Yamada¹, Nakamasa Inoue², Yutaka Satoh¹

1: AIST 2: TITech

ICCV Workshop 2021 (Pre-video)



Tokyo Tech

Motivation

ImageNet pre-trained CNNs have become the breakthrough

- ✓ Good feature representation for transfer learning
- Datasets have problems
 - ✓ Privacy-violating and ethics-related labels
 - ✓ ImageNet is limited to academic- and educational-purpose

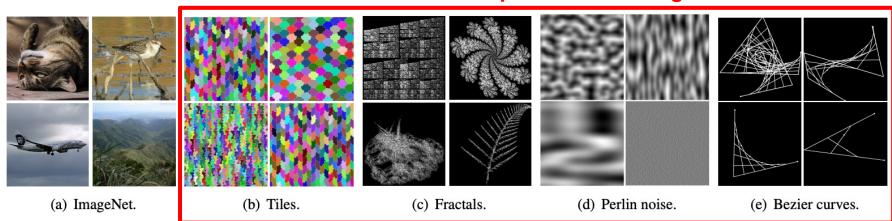

To overcome these issues, it is better to automatically create image datasets without any natural images

[1] Kaiyu Yang, et al., "Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy," FAT* 2020.

Formula-driven Supervised Learning (FDSL)

Fractal DataBase

- Automatically make image patterns and their labels
- With any mathematical formulas and functions

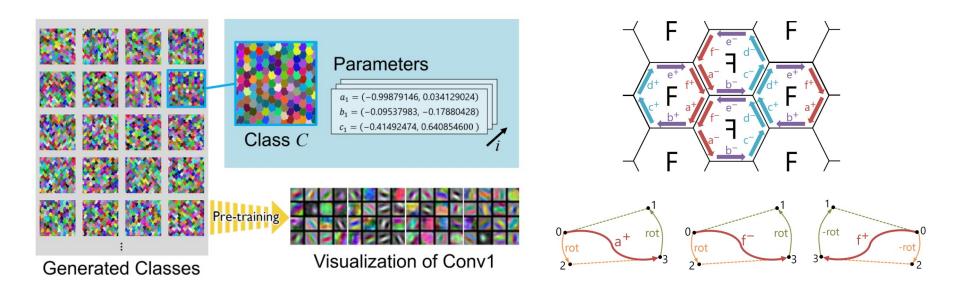

The FractalDB pre-trained model heavily relied on a large amount of parameter tuning

[2] Hirokatsu Kataoka, et al., "Pre-training without Natural Images," ACCV 2020.

Proposed method: TileDB

Key points

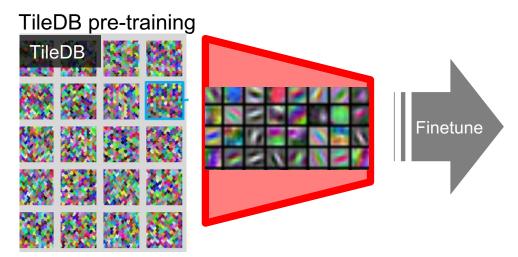
- 1) To make a dataset from fewer hyperparams than FractaIDB
- 2) To acquire good feature representations through pre-training3) To perform similarly to a human supervision


Formula-driven Supervised Learning

This is worthwhile to propose like a new pretext task in SSL

Proposed method: TileDB

TileDB


are created by adding three operations to regular hexagonal tiles: moving vertices, deforming edges, and moving symmetrically in a specular direction
basically contains 1,000 categories and 1,071 images per category

Experimental setting

Pre-training & Fine-tuning

- Pre-training without any natural images
- Fine-tuning in an ordinal way

Pre-training on Natural Image Dataset

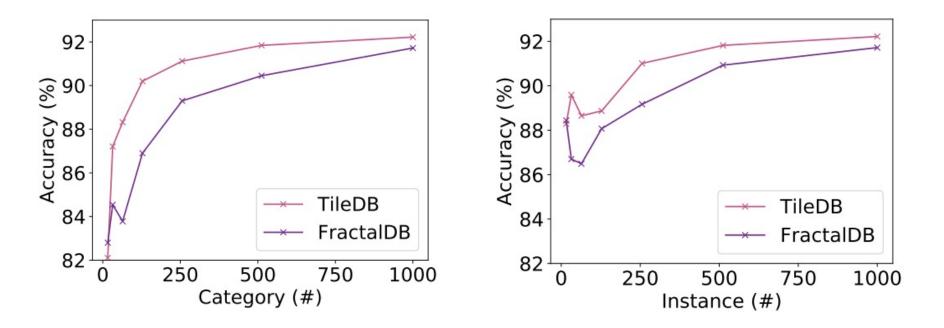
e.g. CIFAR-10/100, Places, ImageNet

Compare Formula-driven Supervised Learning with other principles

Pre-training	C10	C100	P30	VOC12
From scratch	87.6	62.7	70.7	58.9
BezierCurveDB [17]	89.7	68.1	73.6	65.4
PerlinNoiseDB [17]	90.9	70.4	74.2	69.9
TileDB (proposed)	92.3	73.5	75.0	69.4

Our method partially surpasses the BezierCurveDB / PerlinNoizeDB pre-trained models

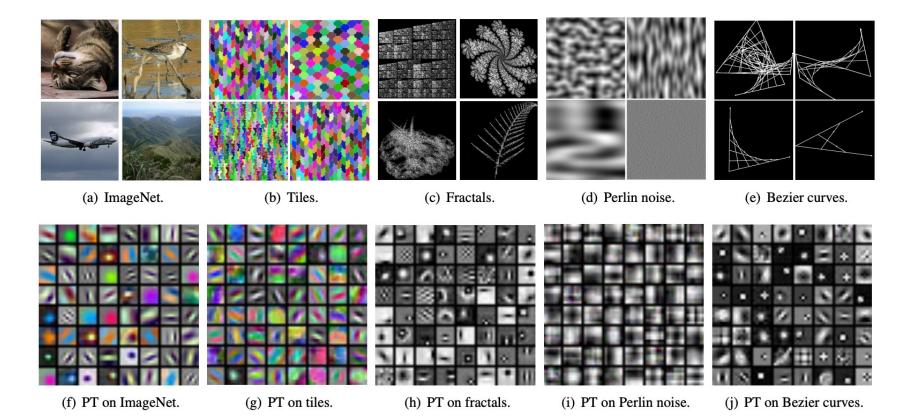
Results: Comparisons with conventional work


Compared our proposed method with representative pre-trained models in SL and SSL

Pre-training dataset	Image	Label	C10	C100	P30	VOC12
From scratch	_	-	87.6	62.7	70.7	58.9
DeepCluster	Natural Image	Self-supervision	89.9	66.9	75.1	67.5
DeepCluster	Formula	Self-supervision	83.1	57.0	72.8	60.4
Places-30	Natural Image	Human-supervision	90.1	67.8	_	69.5
Places-365	Natural Image	Human-supervision	94.2	76.9	·—	78.6
ImageNet-100	Natural Image	Human-supervision	91.3	70.6	_	72.0
ImageNet-1k	Natural Image	Human-supervision	96.8	84.6	79.5	85.8
TileDB (proposed)	Formula	Formula-supervision	92.5	73.7	78.0	71.4

TileDB pre-trained model is still better than 100k-order supervised datasets at all fine-tuned datasets

Results: Comparisons with FractaIDB


Relationship between accuracy and #category / #instance on CIFAR-10

TileDB tends to be a simple tuning in a compact dataset

Results: Comparisons of feature representations

Compared both FDSL and ImageNet in terms of the initial convolutional maps

TileDB pretrained features are similar to ImageNet pre-trained features on ResNet-50 We're also trying to implement how to simply and automatically create a large-scale image dataset for trustworthy computer vision.