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Dynamic	Fashion	Cultures	in	the	world	cities?
What	kind	of	FashionDB do	we	need?
Ø Huge-scale	fashion	database
Ø GPS/time	stamp	are	corresponded	in	a	fashion	snap
Ø Less	noise	with	data	refinement

The	concept	of	dynamic	fashion	cultures
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25M	Fashion	DB	w/	geo-tagged	and	time-stamp
Ø Based	on	YFCC100M*
Ø On	of	the	largest	DB	in	context	of	fashion	analysis	(to	our	knowledge)

Fashion	Culture	DataBase (FCDB)

1,981,812 geo-tag imgs
25,707,690 person bboxes

16 representative cities

YFCC100M*	=Yahoo	Flickr	Creative	Commons	100M	database	[Thomee ACM2016]
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Discovering	world-wide	fashion	trends	w/	FCDB
(1) Fashion	Culture	DataBase (FCDB),	which	contains	and	is	

refined	25M	images	on	Flickr
Ø Semi-automatic	dataset	collection	with	existing	detector
Ø Data	refinement	with	binary	classification

(2)	As	the	perspective	of	huge	DB,	we	conduct	inter-city	
similarity	and	temporal	fashion	trends	in	a	simple	way
Ø Bag-of-words	(BoF)	+	StyleNet Vec (128-dim)
Ø Temporal	subtraction	between	two	consecutive	BoF vectors

Contributions



How	to	construct	FCDB	(1st step)
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Faster
R-CNN

latitude:	35.613116,	longitude:	139.783687,	
date:	2006/July/21th

original	image
Clothing	Image

Tokyo

1)	Collect	images
1)-1:	Collect	images	on	YFCC100M
1)-2:	Images	are	taken	around	16	cities	by	GPS

2) Put	bboxes on	street	fashion	snaps
2)-1:	Human	detection	by	Faster	R-CNN
2)-2:	Crop	the	detected	human	regions

Result	in	the	first	step:

8,504,037 original	images
76,532,519 clothing	images



FCDB	Refinement	(2nd step)
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Human	(fashion	snap)	or	noise	with	binary	classifier
1)	Training	configuration

Ø Classifier	by	StyleNet feature	and	SVM
Ø Train	/	Test	:	2,886	/	2,886	(Total	5,772	images	annotated	by	humans)

2) Refinement-by-Classification
2)-1:	Apply	to	all	images	in	FCDB
2)-2:	Noise	images	are	removed

Result	in	the	second	step:

8,504,037	original	images
76,532,519	fashion	snaps

1,981,812 original	images
25,707,690 fashion	snaps Noise	images

(Non	human	/	miss	detection)

Human	images
(Fashion	snaps)

SVM



FCDB	Refinement	(2nd step)
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Human	(fashion	snap)	or	noise	with	binary	classifier
1)	Training	configuration

Ø Classifier	by	StyleNet feature	and	SVM
Ø Train	/	Test	:	2,886	/	2,886	(Total	5,772	images	annotated	by	humans)

2) Refinement-by-Classification
2)-1:	Apply	to	all	images	in	FCDB
2)-2:	Noise	images	are	removed

Result	in	the	second	step:

8,504,037	original	images
76,532,519	fashion	snaps

1,981,812 original	images
25,707,690 fashion	snaps Noise	images

(Non	human	/	miss	detection)

Human	images
(Fashion	snaps)

SVM

Before	refinement:	noise	images	are	included

After	refinement:	less	noise	images



Related	fashion-oriented	databases
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Database #images #cate. GPS? Box?
Time

Stamp?
HipsterWars 1,893 5
Fashionista 158,235 53 ✓

Fashion144k 144,169 N/A ✓
Fashion14 13,126 14
DeepFashoin 800,000 1,050 ✓

FCDB (ours) 25,707,690 16 ✓ ✓ ✓

Against	to	the	previous	databases,	our	database	contains	street	snaps

• Ten-million-order	images	on	SNS
• More	diverse

• Geo-tagged	+	Time-stamped	images
• Taken	from	daily	life,	rather	than	no-
background FC
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Fashion	Style	Distribution	(FSD):	aggregated	fashion	
distribution	at	each	city
1) Extracting	StyleNet [Simo-Serra+,	2016] which	has	128-dim	vector
2) Feature	quantization	by	Bag-of-Words	(BoW)

Step2-1:	k-means clustering: the	centroids	define	pseudo	fashion	style
Step2-2:	Vote	for	the	most	similar	fashion	style by	distance	from	representative	
vectors	of	fashion	styles

Map	onto	
feature	space

Centroids⇔ Pseudo	Fashion	Styles

Style	1

Style	2

Style	3

Style	4Style	5

Tokyo
100K

London
100K

Paris
100K

…

16
ci
tie

s

Feature	space
StyleNet vector

[Simo-Serra+,	2016]	E.	Simo-Serra,	S.	Fidler,	F.	Moreno-Noguer,	and	R.	Urtasun.	Neuroaesthetics in	fashion:	Modeling	
the	perception	of	fashionability.	CVPR,	2015.

City-scale	fashion	representation	(1/2)

Fashion	snap	
at	each	city



City-scale	fashion	representation	(2/2)
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Visual	Words⇔ Spontaneous	Fashion	Styles

Style	1

Style	2

Style	3

Style	4Style	5

Tokyo

Tokyo	fashion	trends

Appearanc
efrequency

Paris

Appearanc
efrequency

Style	4

Style	3

Style	2

Style	1

Style	5

Paris	fashion	trends
Tokyo

Paris

Fashion	Style	Distribution	(FSD):	aggregated	fashion	
distribution	at	each	city
1) Extracting	StyleNet [Simo-Serra+,	2016] which	has	128-dim	vector
2) Feature	quantization	by	Bag-of-Words	(BoW)

Step2-1:	k-means clustering: the	centroids	define	pseudo	fashion	style
Step2-2:	Vote	for	the	most	similar	fashion	style by	distance	from	representative	
vectors	of	fashion	styles

[Simo-Serra+,	2016]	E.	Simo-Serra,	S.	Fidler,	F.	Moreno-Noguer,	and	R.	Urtasun.	Neuroaesthetics in	fashion:	Modeling	
the	perception	of	fashionability.	CVPR,	2015.



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

Nodes/edges	show	how	much	similar	between	cities
Ø A	thick	line	indicates	high	similarity
Ø The	fashion-based	city	similarity	is	affected	by	culture



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

The	graph	shows	how	much	similar	between	2	cities
Ø A	thick	line	indicates	high	similarity
Ø The	fashion-based	city	similarity	is	affected	by	culture

North American countries are 
correlated



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

The	graph	shows	how	much	similar	between	2	cities
Ø A	thick	line	indicates	high	similarity
Ø The	fashion-based	city	similarity	is	affected	by	culture

NYC is similar to 
London & Barcelona



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

The	graph	shows	how	much	similar	between	2	cities
Ø A	thick	line	indicates	high	similarity
Ø The	fashion-based	city	similarity	is	affected	by	culture

Is Tokyo a unique city 
in the world?



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

Randomly	sampled	images	in	Tokyo
Ø The	fashion-based	city	similarity	is	affected	by	culture

Is Tokyo a unique city 
in the world?

Costume	play?	Character	show?



Fashion-based	city	similarity	graph	with	FSD
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East	Asia

North	America

Southeast	Asia
South	Asia
Europe

Randomly	sampled	images	in	Tokyo
Ø The	fashion-based	city	similarity	is	affected	by	culture

Is Tokyo a unique city 
in the world?

Costume	play?	Character	show?
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� Fashion	Trends	Descriptor	(FTD):	temporal	fashion	trends	detector
Subtraction	of	temporally	consecutive	FSDs
Increased/stable/decreased fashions	can	be	detected

Time	series	representation



Yearly	Fashion	Trends	Visualization
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• Analysis	of	dynamic	fashion	cultures
• Yearly	analysis	in	2000	- 2015
• Visualizing	appeared	fashion	styles
ØBoston
ü Sportswear	keeps increasing	since	2010
→	High	interest	in	sports

ü Hockey team	won	the	Stanley	Cup	in	2011

Ø Tokyo
ü Costumes show	increase	since	2011

→	High	interest	in	Japanese	subculture

The	result	suggests	that	user's	interest	
in	the	area,	to	detect	a	hot	event

Boston	(2011)

Boston	(2012)

Ice hockey team, Boston Bruins 
won the Stanley Cup in 2011



Yearly	Fashion	Trends	Visualization
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• Analysis	of	dynamic	fashion	cultures
• Yearly	analysis	in	2000	- 2015
• Visualizing	appeared	fashion	styles
ØBoston
ü Sportswear	keeps increasing	since	2010
→	High	interest	in	sports

ü Hockey team	won	the	Stanley	Cup	in	2011

Ø Tokyo
ü Costumes show	increase	since	2011

→	High	interest	in	Japanese	subculture

The	result	suggests	that	user's	interest	
in	the	area,	to	detect	a	hot	event

Boston	(2011)

Boston	(2012)

Ice hockey team, Boston Bruins 
won the Stanley Cup in 2011
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Tokyo	(2013)

Tokyo	(2012)

Yearly	Fashion	Trends	Visualization

The character is newly
appeared in 2013.

• Analysis	of	dynamic	fashion	cultures
• Yearly	analysis	in	2000	- 2015
• Visualizing	appeared	fashion	styles
ØBoston
ü Sportswear	keeps increasing	since	2010
→	High	interest	in	sports

ü Hockey team	won	the	Stanley	Cup	in	2011

Ø Tokyo
ü Costumes show	increase	since	2011

→	High	interest	in	Japanese	subculture

The	result	suggests	that	user's	interest	
in	the	area,	to	detect	a	hot	event
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Tokyo	(2013)

Tokyo	(2012)

Yearly	Fashion	Trends	Visualization

The character is newly
appeared in 2013.

• Analysis	of	dynamic	fashion	cultures
• Yearly	analysis	in	2000	- 2015
• Visualizing	appeared	fashion	styles
ØBoston
ü Sportswear	keeps increasing	since	2010
→	High	interest	in	sports

ü Hockey team	won	the	Stanley	Cup	in	2011

Ø Tokyo
ü Costumes show	increase	since	2011

→	High	interest	in	Japanese	subculture

The	result	suggests	that	user's	interest	
in	the	area,	to	detect	a	hot	event
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1. Proposal	of	Fashion	Culture	Database

2. fashion	trends	analysis	method
Ø Representation of	fashion	trends
Ø Time	series	representation of	fashion	trends

3. Spatiotemporal	analysis of	fashion	trends
Ø Regionality of	fashion	trends
Ø Temporal	change in	clothing	prevalence

Summary
Proposal	of large-scale database
contributing	to fashion	trends analysis
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Toward	release	database!?
We’re	struggling	to	release	the	data!
• Commercial-free	images	are	being	collected
• Building	a	set	focused	on	clear	images


