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~Dynamic Fashion Cultures in the world cities?

What kind of FashionDB do we need?

» Huge-scale fashion database
» GPS/time stamp are corresponded in a fashion snap
» Less noise with data refinement

The concept of dynamic fashion cultures
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Fashion Culture DataBase (FCDB)

25M Fashion DB w/ geo-tagged and time-stamp
> Based On YFCClOOM* YFCC100M* =Yahoo Flickr Creative Commons 100M database [Thomee ACM2016]
» On of the Iargest DB in context of fashion analy5|s (to our knowledge)

i fgeo"'-'t'ég'imgs'
, person bboxes
representatlve cities
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\ Contributions

Discovering world-wide fashion trends w/ FCDB
(1) Fashion Culture DataBase (FCDB), which contains and is
refined 25M images on Flickr

> Semi-automatic dataset collection with existing detector
» Data refinement with binary classification

(2) As the perspective of huge DB, we conduct inter-city
similarity and temporal fashion trends in a simple way

> Bag-of-words (BoF) + StyleNet Vec (128-dim)
» Temporal subtraction between two consecutive BoF vectors
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How to construct FCDB (15t step)

1) Collect images

1)-1: Collect images on YFCC100M

1)-2: Images are taken around 16 cities by GPS
2) Put bboxes on street fashion snaps

2)-1: Human detection by Faster R-CNN

2)-2: Crop the detected human regions

Result in the first step:
8,504,037 original images
76,532,519 clothing images

Faster
R-CNN

4‘>

latitude: 35.613116, longitude: 139.783687,
date: 2006/July/21th

\ original image
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FCDB Refinement (2"9 step)

Human (fashion snap) or noise with binary classifier
1) Training configuration

» Classifier by StyleNet feature and SVM

» Train / Test : 2,886 / 2,886 (Total 5,772 images annotated by humans)
2) Refinement-by-Classification ;g

2)-1: Apply to all images in FCDB W

2)-2: Noise images are removed

Result in the second step:
8,504,037 original images
76,532,519 fashion snaps

Huma”‘ages
(Fashion snaps)

1,981,812 original images
25,707,690 fashion snaps

Noise images
(Non human / miss detection)
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Related fashion-oriented databases

* Ten-million-order images on SNS

* More diverse
* Geo-tagged + Time-stamped images

* Taken from daily life, rather than no-
background

LEby
o

HipsterWars

Database #images ‘ #Hcate.

HipsterWars 1,893 5

Fashionista 158,235 53 v

Fashion144k 144,169 N/A v

Fashion14 13,126 14

DeepFashoin 800,000 1,050 v

FCDB (ours) 25,707,690 16 v v v

Against to the previous databases, our database contains street snaps
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City-scale fashion representation (1/2)

Fashion Style Distribution (FSD): aggregated fashion

distribution at each city
1) Extracting StyleNet [Simo-Serra+, 2016] \yhjch has 128-dim vector

2) Feature quantization by Bag-of-Words (BoW)
Step2-1: k-means clustering: the centroids define pseudo fashion style
Step2-2: Vote for the most similar fashion style by distance from representative
vectors of fashion styles

)

100K
I —>

Map onto
100K feature space

London |

16cities
\

StyleNet vector
100K

Paris |emmmd

~——

Fashion snap
at each city

[Simo-Serra+, 2016] E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun. Neuroaesthetics in fashion: Modeling
the perception of fashionability. CVPR, 2015.

Centroids < Pseudo Fashion Styles
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City-scale fashion representation (2/2)

Fashion Style Distribution (FSD): aggregated fashion
distribution at each city

1) Extracting StyleNet [Simo-Serra+, 2016] \yhjch has 128-dim vector
2) Feature quantization by Bag-of-Words (BoW)
Step2-1: k-means clustering: the centroids define pseudo fashion style
Step2-2: Vote for the most similar fashion style by distance from representative

vectors of fashion styles

Tokyo fashion trends
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[Simo-Serra+, 2016] E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun. Neuroaesthetics in fashion: Modeling
the perception of fashionability. CVPR, 2015.
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Fashion-based city similarity graph with FSD

Nodes/edges show how much similar between cities
» A thick line indicates high similarity

» The fashion-based city similarity is affected by culture
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Fashion-based city similarity graph with FSD

The graph shows how much similar between 2 cities
» A thick line indicates high similarity
» The fashion-based city similarity is affected by culture

Fengjikeong
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Fashion-based city similarity graph with FSD

The graph shows how much similar between 2 cities
» A thick line indicates high similarity
» The fashion-based city similarity is affected by culture
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Fashion-based city similarity graph with FSD

The graph shows how much similar between 2 cities
» A thick line indicates high similarity
» The fashion-based city similarity is affected by culture
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Time series representation

* Fashion Trends Descriptor (FTD): temporal fashion trends detector
Subtraction of temporally consecutive FSDs

Increased/stable/decreased fashions can be detected

pt — yptl Av? F*(t) FO(t) F(1)
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Yearly Fashion Trends Visualization

Ice hockey team, Boston Bruins
won the Stanley Cup in 2011

i3

Boston (2011)

* Analysis of dynamic fashion cultures
* Yearly analysis in 2000 - 2015 [

* Visualizing appeared fashion styles
»Boston

v’ Sportswear keeps increasing since 2010
— High interest in sports
v Hockey team won the Stanley Cup in 2011

» Tokyo

v’ Costumes show increase since 2011
— High interest in Japanese subculture

Boston (2012)

The result suggests that user's interest

in the area, to detect a hot event
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Yearly Fashion Trends Visualization

Ice hockey team, Boston Bruins

* Analysis of dynamic fashion cultures
[won the Stanley Cup in 2011

* Yearly analysis in 2000 - 2015

* Visualizing appeared fashion styles
»Boston

v’ Sportswear keeps increasing since 2010
— High interest in sports
v Hockey team won the Stanley Cup in 2011

» Tokyo

v’ Costumes show increase since 2011
— High interest in Japanese subculture

The result suggests that user's interest

in the area, to detect a hot event
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Yearly Fashion Trends Visualization

* Analysis of dynamic fashion cultures
* Yearly analysis in 2000 - 2015

* Visualizing appeared fashion styles
»Boston

v’ Sportswear keeps increasing since 2010
— High interest in sports
v Hockey team won the Stanley Cup in 2011

» Tokyo

v’ Costumes show increase since 2011
— High interest in Japanese subculture

The character is newly
appeared in 2013.

The result suggests that user's interest

in the area, to detect a hot event
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Yearly Fashion Trends Visualization

* Analysis of dynamic fashion cultures
* Yearly analysis in 2000 - 2015

* Visualizing appeared fashion styles
»Boston
v’ Sportswear keeps increasing since 2010
— High interest in sports
v Hockey team won the Stanley Cup in 2011
y yHRUP ISR Tokyo (2013)
» Tokyo

v’ Costumes show increase since 2011 Th haracter is n |
— High interest in Japanese subculture € character IS newly

appeared in 2013.

The result suggests that user's interest

in the area, to detect a hot event
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Summary

Base

I'JB)_,jn the world~

Proposal of large-scale database

contributing to fashion trends analysis

1. Proposal of Fashion Culture Database

2. fashion trends analysis method , ,
» Representation of fashion trends porson bhaxes

e > HIERAR: WG B), ADERERCRSY B), BEEBESY B), T—4%2G7A)

» Time series representation of fashion trends

3. Spatiotemporal analysis of fashion trends
» Regionality of fashion trends TeByo
» Temporal change in clothing prevalence
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Toward release database!?

We’'re struggling to release the data!
 Commercial-free images are being collected

* Building a set focused on clear images




