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Abstract. Activity recognition has been an active research topic in
computer vision. Recently, the most successful approaches use dense tra-
jectories that extract a large number of trajectories and features on the
trajectories into a codeword. In this paper, we evaluate various features
in the framework of dense trajectories on several types of datasets. We
implement 13 features in total by including five different types of de-
scriptor, namely motion-, shape-, texture- trajectory- and co-occurrence-
based feature descriptors. The experimental results show a relationship
between feature descriptors and performance rate at each dataset. Differ-
ent scenes of traffic, surgery, daily living and sports are used to analyze
the feature characteristics. Moreover, we test how much the performance
rate of concatenated vectors depends on the type, top-ranked in exper-
iment and all 13 feature descriptors on fine-grained datasets. Feature
evaluation is beneficial not only in the activity recognition problem, but
also in other domains in spatio-temporal recognition.

1 Introduction

Recently, activity recognition has become one of the most active topics in the field
of computer vision. Since space-time interest points (STIP) [1] were proposed,
many researchers have studied activity recognition. Several survey papers have
been published in activity recognition such as Moeslund et al. [2] and Aggarwal
et al. [3]. Moeslund et al. [2] introduced a large number of approaches, not only
in activity recognition, but also in human detection and tracking in their paper,
and Aggarwal et al. [3] listed several recognition styles such as single person’s
activity and interaction recognition.

In their study of activity representation, Wang et al. [4] evaluated several
space-time features for activity recognition, e.g., STIP [5], cuboid [6], Hessian [7]
and dense [4] features with more detailed experimental settings. This evaluation
has led to the idea of dense trajectories (DT) [8], which outperform other space-
time features. In follow-up work with improved dense trajectories (iDT) [9], they
improved their idea by implementing estimating camera motion with speeded-up
robust features (SURF) [10] and a homography matrix, human rectangles and
Fisher vector [11]. The improvements induced outstanding performance rates
such as UCF50 [12] (91.2%), and Hollywood2 [13] (64.3%). The current state-
of-the-art approach on the side of accuracy is the combination of iDT and per
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frame deep net features (6,7,8-layers) [14]. According to the THUMOS challenge,
which consists of activity classification in a large-scale database [14], the iDT
should be used to more completely understand all human activity, and not only
deep net features.

Benenson et al. [15] cited and implemented over 40 approaches including
various features and classifiers so as to detect a pedestrian in traffic scenes.
The results of three familiar frameworks (random forests [16], deformable part
model (DPM) [17] and deep learning [18]) are close if there are enough fine-tuned
parameters. Thus, the comparison of various approaches will be a significant test
to determine how much to change and how to apply the feature descriptors. In
activity recognition, feature evaluation is important to gain knowledge of a more
practical use of a space-time feature descriptor for activity recognition.

In this paper, we execute efficient evaluations with various dense trajectory-
based feature descriptors on multiple types of datasets including traffic (NTSEL–
self-collected), surgery (INRIA surgery [19]), daily living (MSR daily activity
3D [20]) and sports (UCF50 [12]) scenes. Moreover, the 13 features are assigned
and divided into five feature properties: (i) trajectory (ii) shape (iii) motion (iv)
texture and (v) co-occurrence. The performance rate of activity classification
depends on the computational environment, i.e., activity codewords, trajectory
patterns, classifier settings and cross-validation task. We furthermore evaluate
various features in a fair experimental setting.

The rest of the paper is organized as follows. In the next section we describe
the dense feature and 13 feature descriptors used in this paper. In section 3,
we show the effectiveness of the 13 feature descriptors and their concatenated
vectors in our experimental results by means of four datasets. Finally, in the last
section we conclude the paper.

2 Feature evaluation strategy

Figure 1 shows the framework of the 13 feature descriptors in the dense tra-
jectories framework. We applied 13 features– trajectory feature (traj.) [8], his-
tograms of oriented gradients (HOG) [21], scale invariant feature transform
(SIFT) [22], histograms of optical flow (HOF) [23], motion boundary histogram
(MBHx & MBHy) [24], motion interchange patterns (MIP) [25], higher-order
local auto correlation (HLAC) [26], local binary patterns (LBP) [27], improved
LBP (iLBP) [28], local trinary patterns (LTP) [29], Co-occurrence HOG (Co-
HOG) [30], and Extended CoHOG (ECoHOG) [31] in this evaluation. We cate-
gorized the 13 features into five topics, namely: (i) trajectory– traj. (ii) shape–
HOG and SIFT (iii) motion– HOF, MBH, and MIP (iv) texture– HLAC, LBP,
iLBP and LTP, and (v) co-occurrence– CoHOG and ECoHOG. Moreover, the
dense trajectories (DT) [8] + bag-of-words (BoW) model (not improved DT +
Fisher vector [9]) was used in this evaluation because we evaluated the perfor-
mance ability of the feature descriptors themselves. We used a support vector
machine (SVM) as a multi-class classifier following [8].
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Fig. 1. The framework of the 13 feature descriptors in the dense feature framework.

2.1 Dense trajectories

We used Wang’s dense trajectories [8] (DT) to create bag-of-words (BoW) vec-
tors [32] for activity recognition. The idea of DT includes dense sampling and
space-time feature extraction at the sampled points. Feature points at each grid
cell are computed with Farneback optical flow. To take care of scale changes, the
DT extracts dense flows in multiple image scales, where the image size increases
by a scale factor 1/

√
2. A large number of DT flows among the multiple scales

are integrated into a feature vector based on BoW. This setup allows us to obtain
a detailed motion at the specified patch. The length of the trajectory was set
as 15 frames. Therefore, we recorded 0.5 seconds activities from a 30 fps video.
Moreover, we set all BoW vectors to 4000 dimensions at each feature descriptor
following [8].

2.2 Thirteen feature descriptors

Trajectory feature [8]. In activity analysis, the trajectory feature (traj.) [8]
was extracted at each image patch. The size of the patch was 32×32 pixels,
which is divided into 2×2 blocks. Here, the trajectory feature (T ) is calculated
as below:

T =
(δPt, ..., δPt+L−1)

Σt+L−1
j=t ||Pj ||

(1)

δPt = (δPt+1 − δPt) = (xt+1 − xt, yt+1 − yt) (2)

where L is the trajectory length. The feature represents a shape of connected
optical flow.

Histograms of oriented gradients (HOG) [21]. HOG describes a fea-
ture vector with accumulating edge-magnitude into a quantized edge direction
histogram. The process of feature extraction consists of edge calculation and
normalization. Edge magnitude is accumulated into the quantized histogram by
edge direction with m(u, v) =

√
f2
u + f2

v and θ(u, v) = arctan(fv/fu), where
the magnitude and direction are m(u, v) and θ(u, v), f(x, y) is the differences
between two pixels in the x and y directions. Feature extraction is executed
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on overlapping blocks, and the feature vector is normalized every block with a
norm.

Scale invariant feature transform (SIFT) [22]. This approach has char-
acteristics of scale- and rotation-invariant features. SIFT contains keypoint de-
tection and feature description; however, we mainly apply feature description to
evaluate as a descriptor. To describe a feature vector, SIFT takes care of the
image rotation by deciding a maximum direction. SIFT extracts 8 orientations
divided into 4× 4 blocks, giving 128 dimensions from an image patch.

Histograms of optical flow (HOF) [23]. The captured optical flows are
quantized into nine directions. Wang et al. implemented HOF with a 4-divided
image patch in his paper [8], therefore, a 36-dimension feature is extracted in an
image patch. The feature represents normalized optical flow on a human motion
area.

Motion boundary histograms (MBH) [24]. The motion boundary calcu-
lates the difference between two temporal frames. Therefore, it is less susceptible
to capturing background noise when the camera motion is stable. Usually MBH
features include the x- and y-directions together. However, we separate MBH
into each direction MBHx and MBHy to analyze the properties of the feature
descriptor at each scene.

Motion interchange patterns (MIP) [25]. This feature basically extracts
a feature vector with trinary encoded pattern changes from a noticed area. Three
temporal frames are applied to construct a motion interchange pattern.

Higher-order local auto correlation (HLAC) [26]. HLAC describes
a feature by counting 25 significant mask patterns. The patterns indicate the
displacement of a human in an image patch. The 25 pattern count allows us to
capture a high-level movement, and we capture the patterns from the edge and
the binarized image.

Local binary patterns (LBP) [27]. The process of LBP is constructed
using a binarization step and an encoding step. In the binarization step, we
process each 3× 3 pixel patch to compare two pixels at the center of patch. The
values are binarized with magnitude correlation in the patch. We capture eight
binarized values, then the values are translated into 0 – 255 as a feature (this is
an encoding step).

Improved LBP (iLBP) [28]. The basic idea of binarization is close to
the normal LBP. The iLBP compares the eight nearest pixels with the averaged
value of the nine pixels in a 3×3 patch. The feature emphasizes an edge element
compared with LBP.

Local trinary patterns (LTP) [29]. The improved feature descriptor with
trinary patterns has the same description as LBP. The feature instinctively cap-
tures by preparing an additional neutral class from two binarized classes. Be-
cause of the third class, it has more powerful representation as a texture-based
descriptor.

CoHOG [30]. Co-occurrence Histogram of Oriented Gradient (CoHOG) is
able to describe more complex shapes by pairing the brightness gradient direc-
tions in HOG. The brightness gradient direction of the pair is calculated using
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the co-occurrence matrix. The co-occurrence matrix is calculated by counting
the number of brightness gradient directions of the pair that are a target pixel,
and the specific positional relationship from the target pixel in the block.

Cx,y(i, j) =
n∑

p=1

m∑
q=1



1
(if d(p, q) = i and
d(p+ x, q + y) = j)

0
(otherwise)

(3)

where C(i, j) is the co-occurrence histogram that accumulates pairs of the pixel
of interest and an objective pixel. Coordinates (p, q) indicate the pixel of interest
(center of window) and coordinates (p + x, p + y) indicate the objective pixel.
m and n are the width and height of the feature extraction window. d(p, q) is
a function that quantizes the edge direction as an integer from 0 to 7 at pixel
(p, q).

ECoHOG [31]. Extended Co-occurrence Histogram of Oriented Gradient
(ECoHOG) enables a more efficient feature description by deleting the feature
dimensions in CoHOG and extracting only the valid features. ECoHOG makes
improvements over CoHOG via the accumulation of edge strength, the step
acquisition of edge pairs and time series feature representation. We describe
each of these processes below. CoHOG generates a histogram by counting the
number of pairs of brightness gradients. However, ECoHOG describes not only
the shape but also the intensity of light and shade and the condition of the
change by accumulating edge intensity.

m1(x1, y1) =
√

fx1(x1, y1)2 + fy1(x1, y1)2 (4)

m2(x2, y2) =
√

fx2(x2, y2)2 + fy2(x2, y2)2 (5)

Cx,y(i, j) =
n∑

p=1

m∑
q=1



m1(x1, y1) +m2(x2, y2)
(if d(p, q) = i and
d(p+ x, q + y) = j)

0
(otherwise)

(6)

m1(x, y) and m2(x, y) are the magnitudes of the pixel of interest (at the center
of the window) and the magnitudes in the objective window, respectively.

3 Experiments

We carried out evaluations of feature descriptors in the framework of dense
trajectories. Figure 2 shows the performance rates and Table 1 shows the top
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Fig. 2. Overall rate of 13 features in the framework of dense trajectories [8] on the four
datasets (NTSEL, INRIA surgery, MSR, and UCF50).

three features with dense trajectories on the four different types of datasets,
namely in traffic (NTSEL traffic), surgery (INRIA surgery), daily living (MSR
daily activity 3D) and sports (UCF50) scenes. Moreover, the classification with
concatenated vectors is shown in Table 2. Here, Figure 3 shows examples of the
datasets used in the experiments.

3.1 Results

NTSEL traffic dataset.We collected 100 videos with four pedestrian activities
in traffic scenes (see Figure 3 top left). The activities include walking, crossing,
turning, and riding a bicycle, where all of the activities indicate fine-grained
pedestrian motion with three people. The dataset contains a cluttered back-
ground in small areas, making it difficult to capture optical flows. Presented
activities are also fine grained as there are only small variations between walk-
ing, crossing and turning that is, they have a very few appearance and motion
differences. We evaluated this dataset using 5-fold cross validation.

According to Table 1, HOF (89.4%), SIFT (85.0%) and CoHOG (81.4%) are
the top three features in the NTSEL traffic dataset. The activities included in
the NTSEL dataset are fine-grained walking activities. From these results, the
optical flow vectorization (HOF) and detailed shape descriptors (SIFT, CoHOG)
are effective for the classification of walking activities. HOF calculates 9 (dim.)×4
(blocks)×3 (frames) optical flow-based features, therefore it can significantly
represent activities, e.g., walking and crossing, that show subtle differences when
walking at a vertical or horizontal angle to a camera. The quantized optical
flow vectors are able to classify fine-grained walking activities on the dataset.
SIFT (4×4 block division) and CoHOG (co-occurrence feature with extraction
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Fig. 3. Four different datasets: NTSEL traffic dataset (top left), INRIA surgery dataset
(top right), MSR daily 3D activity dataset (middle), and a part of the UCF50 dataset
(bottom)

window) are the detailed shape descriptors and extract temporal differences on
a trajectory.

INRIA surgery dataset [19]. This dataset includes four activities per-
formed by 10 different people with occlusions; e.g., people are occluded by a
table or a chair (see Figure 3 top right). The activities include cutting, hammer-
ing, repositioning, and sitting. Each person performs the same activity twice, one
for training and another for testing in this experiment.

The top three features are SIFT (80.1%), ECoHOG (78.2%) and CoHOG
(78.2%) from Table 1. Near to the NTSEL traffic dataset, the INRIA surgery
dataset contains fine-grained activities in experimental surgery scenes. The cam-
era angle is fixed and the arm swing activities are confusing, so the detailed
shape features such as SIFT, ECoHOG and CoHOG are important for surgery
activity classification. The difference between ECoHOG and CoHOG is edge-
magnitude extraction and edge-pair counting. In this situation, ECoHOG fetches
co-occurrence features with magnitude accumulation, which is slightly better
than CoHOG.

MSR daily activity 3D dataset [20]. The dataset is basically used as a
depth-based activity recognition with a Kinect sensor. Depth and 3D-posture are
given in this dataset, and at the same time we can access RGB videos (see Figure
3, middle). In this experiment, only RGB information is assigned as input data
to calculate feature vectors. There are 16 activities in the dataset: drink, eat,
read book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer
up, sit still, toss paper, play game, lie down on sofa, walk, play guitar, stand up,
sit down. The experiment is executed with leave-one-person-out cross-validation.
Moreover, the trajectory length (L) is 50 because the normal setting of dense
trajectories (15 frame accumulation) is extremely short so as to capture feature
elements from an activity in a daily living activity.

MBHx (89.3%), MBHy (85.8%) and CoHOG (83.8%) are listed as the top
three feature descriptors. The original paper on dense trajectories [8] reported
that the MBH effectively extracts motions for human activity. The motion
boundary is a well-classified feature that is not dependent on horizontal and
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Table 1. The top three performance rates with dense trajectories on the four datasets.

Dataset Outline Top three features

NTSEL Fine-grained pedestrian activities. HOF (89.4%)
SIFT (85.0%)

CoHOG (81.4%)

INRIA Fine-grained surgery activities. SIFT (80.1%)
ECoHOG (78.2%)
CoHOG (78.1%)

MSR Daily living activities. MBHy (89.3%)
MBHx (85.8%)
CoHOG (83.8%)

UCF50 Large-scale sports activities. SIFT (84.5%)
MBHx (73.1%)
CoHOG (72.0%)

vertical direction. Large variations exist in understanding activities of daily liv-
ing. For example, sit still & lie down on sofa are stable activities, and cheer
up & walk are whole body motions. Although the dense trajectories accumulate
over 50 frames to calculate a feature vector on the dataset, both MBH-based
features perform better than the other features. The motion boundary feature
enables subtle motions such as sit still and lie down on sofa to be distinguished,
not only whole body activities. We believe that CoHOG contains a similar pro-
cess to MBH in terms of feature description. CoHOG also extracts a detailed
feature from a human area; however, CoHOG captures a co-occurrence shape
with edge-pair counting.

UCF50 dataset [12]. The UCF50 dataset comprises 1168 videos in 50
categories collected from YouTube (see Figure 3 bottom for examples of the
dataset). There are many categories in this dataset, for example, Baseball Pitch,
Breaststroke, Playing Guitar, Jumping Jack, Punch, Tennis Swing and Walking
with a dog. The dataset also includes several elements that computer vision
has difficulty with, such as camera motion, complicated backgrounds, occlusions
and personal variations. Performance rate is calculated with leave-one-group-out
cross-validation in 25 groups for each activity.

Table 1 shows that SIFT (84.5%), MBHx (73.1%) and CoHOG (72.0%) are
better descriptors than the other 10 features on the UCF50 dataset. SIFT is
an advanced feature descriptor itself in recognition tasks. Here, UCF50 is made
large-scale enough by including an element of object recognition, and therefore
SIFT outperforms other features on the dataset. The MBHx achieved the second
highest score because this feature is likely to be robust to background noise.
Only motion boundary is recorded as a feature. The co-occurrence feature stably
accomplishes a good result on activity recognition by combining dense feature
representations. The relationship between CoHOG and ECoHOG is competitive;
however, CoHOG generally outputs a better score.
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3.2 Concatenated features for activity classification

The several-feature concatenation generally performs with a higher percentage
on a vision-based classification. Here, we carried out the evaluations as to how
to combine the 13 features based on the experiments in section 3.1. Table 2
describes how much the score changes with feature combinations. We prepared
a variety of feature combination approaches: (i) original dense trajectories [8] (as
baseline), (ii) five feature categories, in belief trajectory, shape, motion, texture
and co-occurrence, and (iii) top-ranked shown in section 3.1 and all 13 feature
combinations. We experimentally used two fine-grained datasets (NTSEL traffic
and INRIA surgery dataset) to evaluate feature combination approaches.

Baseline. The original dense trajectories achieved an outstanding score as
they are well-organized structures in activity classification. The four features
(traj., HOG, HOF, MBH) are combined with kernel SVM for fine-grained recog-
nition. The performance rates were 89.6% and 87.5% on the NTSEL traffic and
INRIA surgery datasets, respectively.

Several types of feature. We categorized 13 features into five topics based
on feature characteristics. The statements of several features are itemized here:
trajectory– traj. feature, shape– HOG, SIFT, motion– HOF, MBHx, MBHy and
MIP, texture– HLAC, LBP, iLBP and LTP, co-occurrence [31]– CoHOG, ECo-
HOG. The recognition scores were 45.7% (traj.), 85.2% (shape), 85.9% (motion),
60.7% (texture), 85.0% (co-occurrence) on the NTSEL, and 51.2% (traj.), 85.7%
(shape), 82.5% (motion), 76.4% (texture) and 89.6% (co-occurrence) on the IN-
RIA surgery dataset. The motion feature gave the best rate (85.9%), and the
rates of the shape (85.2%) and co-occurrence (85.0%) features came next on
the NTSEL traffic dataset. The motion feature included HOF and MBH, which
are highly-accurate descriptors in the dataset. In the INRIA surgery dataset,
the co-occurrence feature indicated a significant rate for classifying fine-grained
activities with a precise description. The co-occurrence feature that contained
CoHOG and ECoHOG showed stable vectorization in both datasets. The com-
bination (co-occurrence feature & dense trajectories) of detailed description and
dense representation is sophisticated in terms of fine-grained recognition.

Top-ranked and all 13 feature combinations. The top 3, 5, 7 and all
13 features should be combined to measure the ability of concatenated vectors.
The scores of the concatenated vectors are in a narrow margin; however, the
top seven (90.9%–HOF, SIFT, CoHOG, ECoHOG, MBHx, HOG and LBP) on
the NTSEL traffic dataset and the top five (91.5%– SIFT, ECoHOG, CoHOG,
MBHx and HOF) on the INRIA surgery dataset showed the best rates. The
results demonstrate that all-feature concatenation does not always give the best
accuracy on an activity recognition dataset. At this point, the 13-feature concate-
nation achieved 90.7% on both datasets. We believe that both datasets contain
fine-grained activities, therefore the top-ranked features should be combined for
high-accuracy fine-grained activity classification. Although the number of top-
ranked features is an ad-hoc problem, the accuracy is easy to investigate in a
classification experiment. In every case, we obtained a lower processing speed
with a selected concatenated vector using dense trajectory-based feature extrac-
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Table 2. The performance rate with concatenated features on the NTSEL traffic and
INRIA surgery dataset.

Baseline (%) on NTSEL (%) on INRIA

Wang et al. [8] 89.6% 87.5%

Feature Type (%) on NTSEL (%) on INRIA

Trajectory 45.7% 51.2%
Shape 85.2% 85.7%
Motion 85.9% 82.5%
Texture 60.7% 76.4%
Co-occurrence [31] 85.0% 89.6%

Concatenated Vector (%) on NTSEL (%) on INRIA

Top 3 feature concatenation 89.6% 90.4%
Top 5 feature concatenation 90.2% 91.5%
Top 7 feature concatenation 90.9% 90.8%
All 13 features 90.7% 90.7%

tion and activity classification. We therefore improve both performance rate and
processing speed by using a concatenated vector for fine-grained recognition.

4 Conclusion

In this paper, we evaluated 13 features in the framework of dense trajectories
for more effective activity recognition. We carried out all experiments at fair set-
tings in terms of activity codewords, captured trajectories, classifier settings and
cross-validation. The four scenes are included in the experiments using traffic,
surgery, daily living and sports datasets. The results describe the best perfor-
mance rate at each dataset– HOF (89.4%) on the NTSEL traffic dataset, SIFT
(80.1%) on the INRIA surgery dataset, MBHy (89.3%) on the MSR daily ac-
tivity 3D dataset and SIFT (84.5%) on the UCF50 dataset. Detailed analysis
indicated that the co-occurrence feature containing CoHOG and ECoHOG would
be a stable descriptor in activity recognition. The co-occurrence feature becomes
significant representation by using dense trajectories. In feature concatenation,
we found that the combination of highly-selected features tends to give a better
rate than the integration of all 13 features. Therefore, we experimentally chose
sophisticated features with top-ranked listed features. Particularly in a fine-
grained activity dataset, an extra feature descriptor should NOT be included
for a fine-grained classification by means of only effective features. Moreover,
selected feature concatenation allows us to improve both processing speed and
accuracy.

For more detailed analysis, we visualize how to execute classification with
various features. The subspace representation is one of the most important tasks
in pattern recognition. Moreover, we try to correct for various durations of human
activity.
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