ECCV 2016 poster presentation

Motion Representation with Acceleration Images

Hirokatsu Kataoka¹, Yun He^{1,2}, Soma Shirakabe^{1,2}, Yutaka Satoh^{1,2}

¹Computer Vision Research Group, AIST, Japan

²Human-Centered Vision Lab., University of Tsukuba, Japan

How to improve motion-based features?

Information of time differentiation is extremely important for a motion representation

- The crosspoint of the IDT and the two-stream CNN is the strongest approach
- 94.2% (TSN^[1]) on the UCF101
- It's important to enhance motion representation effectively

Richer image representation other than position (RGB) and speed (flow) is needed

Acceleration-stream

- We employ acceleration-stream in addition to the spatial- and temporal-stream
 - The acceleration images are generated by differential calculations from a sequence of flow images
 - CNN can automatically catch an effective motion feature from sparse and noisy acceleration images

niput			
Innut	BCB	Elowimago	Acceleration image
Physics guantity		l' (1 st -order diff.)	l" (2 nd -order diff.)

Comparison

- Baseline: Very deep two-stream CNN [2]
 - 16-layer, UCF101 pre-trained model
 - Highly dropout ratio in FC layers of the acceleration stream
- Dataset: NTSEL [3]
 - 100 videos of pedestrian actions, walking, turning, crossing, and riding a bicycle
 - Each of the four actions has 25 videos: 15 for training and the other 10 for testing

Sensitive difference between actions

riding

Approach	% on NTSEL
Spatial stream	87.5
Temporal stream	77.5

Conclusion

walking

We add acceleration stream to two-stream CNN

turning

- The representation of acceleration is different from RGB and flow
- CNN can pick up necessary feature in the acceleration images

crossing

□ The motion feature of acceleration is effective for action recog.

The result with stream(A) is better than stream(T)!

Acceleration stream	82.5
Two-streams(S+T)	87.5
Three stream(S+T+A)	90.0

Reference

[1] L. Wang, et al. Temporal segment networks: Towards good practices for deep action recognition. in ECCV, 2016. [2] L. Wang et al. Towards Good Practices for Very Deep Two-Stream ConvNets. In arXiv, 2015. [3] H. kataoka, et al. walking activity recognition via driving recorder dataset. In ITSC,2015.

http://hirokatsukataoka.net/