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Could you guess an interesting movie from the posters?:

An evaluation of vision-based features on movie poster database
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Problem setting Approach
: ’g!\ﬂ‘o - Can you correct the Academy Award 20177 /Academ\f ?
\et S - Which movie poster do you like, and Why . . \ 2016 > Input
e Inout  Input certain film festival on MPDB
\ P ) (For the explanation, input 1s Academy Award
as an example.)
Yy, » Feature extraction
We utilize various types of feature as follow
/  Hand-craft feature
Mg\ SIFT+ BoF, HOG, CoHOG, ECoHOG,
/WINGS /Y LBP, L*a*b*, GIST, Combined Handcraft
P MOONLIGHT feature
1 A  Mid-level feature
We predlct a winner n the 4 blggest film EFeatmje 2 PlaceNet(DeCAF), Flickr(DeCAF) Style,
festivals from nominated movie posters  Extraction Sy eep EmotionNet,
— XeXE T Combined Mid-level feature
Contributions D * Deep feature
. ey 2 AlexNet(DeCAF), VGGNet(DeCAF
» We evaluate various types of feature such as ) Combine( d deep f)e,atur - ( )
hand-craft, mid-level and deep fe.atures | (metho d of combination : late fUSiOIl)
» We have collected a database which contains,
* the nominees and winners in the 4 biggest film y > Prediction
festivals (Academy, Berlin, Cannes, Venice) f A We calculate prediction score by Support
e MPDB has 3,500+ nominate and 290+ winner Prediction ‘ One year : test ‘ Vector Machine.
works over 80 years \ / ‘ Rest year : train ‘ The parameters for identification were set to as
. e C=15.0X% 10n
Movie Poster Database (MPDB) ¢ gamma = 1.0 X 175
~ * kernel = rbf
. VC. . « e .
Film | | nom * Settings of training and testing : leave-one-
| Year #Winners #Nominates fnominates at Cq L
Festival each year year-out-cross-validation.
1929-1932,
Academ 88 440 16.6
> 1934-2016 r ) WL Rl? - » Result
Berlin ~ 1951-2016 63 905 6.50 Result J N e T"ﬁ"‘EmHAN gmﬁm We decide a works as “winner” which have
1030 10461047 N - | the highest prediction score at each year.
1949 1951-1968. e Accuracy 1s an average of results for all years.
Cannes > > 01 1335 6.38 Prediction score
1969-2016
\_ 0.82
1932, 1934-1942, W@
Venice 1946-1972, 53 869 5.75 - P ’@d!steq QSG@ I
1979-2016 Application r:
Posters of this dataset are collected from http://www.imdb.com/ .
- W W W Our system got a correct answer 1n Academy Award
Result 2017
» L*a*b* feature was the highest in the Academy award. Movie title Predicted score Rank
* In the Academy awards, which works selected as Winner tend to have certain colors. Moonlight [Winner] 0.167 1
ex) red, yellow, brown, etc., Lion 0.163 2
» Berlin and Venice showed that the recognition rate using EmotionNet expression is the highest Hell or High Water 0.162 3
identification rate. Arrival 0.151 4
e In the Berlin and Venice, Winner works tend to draw certain facial expression at a certain position. Hacksaw Ridge 0.142 5
Emotion histogram in Berlin Fences 0.138 6
Accuracy 1n each festival 0.14 Hidden Figures 0.114 7
W " Manchester by the Sea 0.112 8
- " La La Land 0.093 9
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