Recognition of Transitional Action for Short-Term Action Prediction using Discriminative Temporal CNN Feature

Hirokatsu Kataoka¹, Yudai Miyashita², Masaki Hayashi^{3,4}, Kenji Iwata¹, Yutaka Satoh¹

¹AIST, Japan ²Tokyo Denki Univ., Japan ³Liquid Inc., Japan ⁴Keio Univ., Japan

Motivation

- Goal
 - Accurate "short-term action prediction"
- Problems in action analysis

Framework

Action Recognition

Early Action Recognition

Action Prediction

Transitional Action Recognition

- Recognition is NOT predictable
- Prediction is NOT reliable
- Applications
 - Active safety, autonomous driving
 - Robots

- IDEA
 - Action-class while an action is transitive (see below)
- Contributions
 - Definition of transitional action for short prediction
 - Subtle Motion Descriptor (SMD) to classify TA*1 and NA*2

*1: Transitional action *2: Normal action

(Proposal) Short-term action prediction recognize "cross" at time t_5

(Previous works) Early action recognition recognize "cross" at time t_0

Transitional Action?

Transitional action is defined as the transition class between actions (see below)

Problem

 $f(F_{1}^{A}) \rightarrow A_{t}$

 $f(F_{1,t-L}^A) \longrightarrow A_t$

 $f(F_{1...t}^A) \longrightarrow A_{t+L}$

 $f(F_{1}^{TA}) \longrightarrow A_{t+L}$

- TA: "walking put down item" between NA: "walking" and NA: "put down item"
- The TA classes and NA classes are partially overlapped each other
 - But no more than 5 frames overlap

put down item walking

Transitional action class

Subtle Motion Descriptor (SMD)

- SMD is used to identify the sensitive differences between TA and NA
 - The SMD is based on pooled time series (PoT) [Ryoo+, CVPR15]
 - Temporal pooling with zero-around elements ($x^{\Delta VO-}$, $x^{\Delta VO+}$)

$$x_i^{\Delta V^+} = \Sigma_{t=t_s}^{t_e} h_i^+(t), \quad x_i^{\Delta V^{0^+}} = \Sigma_{t=t_s}^{t_e} h_i^{0^+}(t)$$

$$x_i^{\Delta V^-} = \Sigma_{t=t_s}^{t_e} h_i^-(t), \quad x_i^{\Delta V^{0^-}} = \Sigma_{t=t_s}^{t_e} h_i^{0^-}(t)$$

$$\begin{cases} h_i^+(t) = |\Delta v_i^t| & (\Delta v_i^t > TH) \\ h_i^{0^+}(t) = |\Delta v_i^t| & (0 < \Delta v_i^t < TH) \\ h_i^{0^-}(t) = |\Delta v_i^t| & (-TH < \Delta v_i^t < 0) \\ h_i^-(t) = |\Delta v_i^t| & (\Delta v_i^t < -TH) \end{cases}$$

Image sequence $x^{\Delta V0+}$, $x^{\Delta V0-}$: Subtle Motion Descriptor (SMD) $x_1^{\Delta V+}$ $x_1^{\Delta V0+}$ $x_1^{\Delta V0-}$ $x_1^{\Delta V-}$ Feature concatenation

Experiments

- NTSEL (Traffic; TA1, NA3), UTKinect-Action (Indoor; TA8, NA10), Watch-n-Patch (Indoor; TA10, NA10)
 - Threshold? good for $0.03 \sim 0.05$
 - Frame accumulation? 10-frame for state-of-the-art, 3-frame for faster prediction
 - FC layer Layer 6 is better

	% on NTSEL 10 frm / 3 frm		% on UT 10 frm / 3 frm		% on WnP 10 frm / 3 frm	
Ours	99.18	85.78	99.19	69.77	59.75	49.93
PoT, CVPR15	97.00	77.15	92.00	65.46	54.93	44.81

Conclusion

- □ Definition of transitional action (TA) for short-term prediction
 - The TA allows us to produce earlier and accurate prediction
- Proposal of subtle motion descriptor (SMD)
 - Outstanding results with 3-frame feature accumulation

Reference

[1] M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled motion features for first-person videos. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.