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F. Rosenblatt et al. “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms” in 1961.
Rumelhart et al. “Learning representations by back-propagating errors” in Nature 1986.
K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”, in 
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Y. LeCun et al. “Gradient-based learning applied to document recognition” in IEEE 1998.
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Abstract

We tackle the problem of using 3D information in convo-
lutional neural networks for down-stream recognition tasks.
Using depth as an additional channel alongside the RGB
input has the scale variance problem present in image con-
volution based approaches. On the other hand, 3D convo-
lution wastes a large amount of memory on mostly unoc-
cupied 3D space, which consists of only the surface vis-
ible to the sensor. Instead, we propose SurfConv, which
“slides” compact 2D filters along the visible 3D surface.
SurfConv is formulated as a simple depth-aware multi-scale
2D convolution, through a new Data-Driven Depth Dis-
cretization (D4) scheme. We demonstrate the effectiveness
of our method on indoor and outdoor 3D semantic segmen-
tation datasets. Our method achieves state-of-the-art per-
formance with less than 30% parameters used by the 3D
convolution-based approaches.

1. Introduction

While 3D sensors have been popular in the robotics
community, they have gained prominence in the computer
vision community in the recent years. This has been
the effect of extensive interest in applications such as au-
tonomous driving [11], augmented reality [32] and urban
planning [47]. These 3D sensors come in various forms
such as active LIDAR sensors, structured light sensors,
stereo cameras, time-of-flight cameras, etc. These range
sensors produce a 2D depth image, where the value at every
pixel location corresponds to the distance traveled by a ray
from the sensor through the pixel location, before it hits a
visible surface in the 3D scene.

Recent success of convolutional neural networks for
RGB input images [24] have raised interests in using them
for depth data. One of the common approaches is to use
handcrafted representations of the depth data and treat them
as additional channels alongside the RGB input [13, 9].
While this line of work has shown that additional depth in-

Code & data at https://github.com/chuhang/SurfConv

Image Convolution

3D Convolution

Surface Convolution

Figure 1. A 3D sensor captures a surface at a single time frame. 2D im-
age convolution does not utilize 3D information and suffers from scale
variance. 3D convolution solves scale variance, but suffers from non-
volumetric surface input where majority of voxels are empty. We propose
surface convolution, that convolutes 2D filters along the 3D surface.

put can improve performance on several tasks, it is not able
to solve the scale variance problem of 2D convolutions. In
the top of Fig. 1, we can see that for two cars at different
distances, the receptive fields of a point have the same size.
This means that models are required to learn to recognize
the same object in different inputs.

1

2D conv

2D conv

2D conv

2D conv

2D conv

fc

(a) R2D

3D conv

3D conv

3D conv

3D conv

3D conv

fc

(d) R3D

(2+1)D conv

fc

(2+1)D conv

(2+1)D conv

(2+1)D conv

(2+1)D conv

(e) R(2+1)D

2D conv

2D conv

2D conv

3D conv

3D conv

fc

(b) MC

3D conv

3D conv

3D conv

2D conv

2D conv

fc

(c) rMCx x

space-time pool space-time pool space-time pool space-time pool space-time pool

clip clip clip clip clip

Figure 1. Residual network architectures for video classification considered in this work. (a) R2D are 2D ResNets; (b) MCx are
ResNets with mixed convolutions (MC3 is presented in this figure); (c) rMCx use reversed mixed convolutions (rMC3 is shown here); (d)
R3D are 3D ResNets; and (e) R(2+1)D are ResNets with (2+1)D convolutions. For interpretability, residual connections are omitted.

3. Convolutional residual blocks for video
In this section we discuss several spatiotemporal convo-

lutional variants within the framework of residual learning.
Let x denote the input clip of size 3⇥L⇥H⇥W , where L
is the number of frames in the clip, H and W are the frame
height and width, and 3 refers to the RGB channels. Let
zi be the tensor computed by the i-th convolutional block
in the residual network. In this work we consider only
“vanilla” residual blocks (i.e., without bottlenecks) [13],
with each block consisting of two convolutional layers with
a ReLU activation function after each layer. Then the output
of the i-th residual block is given by

zi = zi�1 + F(zi�1; ✓i) (1)

where F(; ✓i) implements the composition of two convo-
lutions parameterized by weights ✓i and the application of
the ReLU functions. In this work we consider networks
where the sequence of convolutional residual blocks cul-
minates into a top layer performing global average pooling
over the entire spatiotemporal volume and a fully-connected
layer responsible for the final classification prediction.

3.1. R2D: 2D convolutions over the entire clip

2D CNNs for video [29] ignore the temporal ordering
in the video and treat the L frames analogously to chan-
nels. Thus, we can think of these models as reshaping the
input 4D tensor x into a 3D tensor of size 3L ⇥ H ⇥ W .
The output zi of the i-th residual block is also a 3D tensor.
Its size is Ni ⇥ Hi ⇥ Wi where Ni denotes the number of
convolutional filters applied in the i-th block, and Hi,Wi

are the spatial dimensions, which may be smaller than the
original input frame due to pooling or striding. Each fil-
ter is 3D and it has size Ni�1 ⇥ d ⇥ d, where d denotes
the spatial width and height. Note that although the filter is
3-dimensional, it is convolved only in 2D over the spatial

dimensions of the preceding tensor zi�1. Each filter yields
a single-channel output. Thus, the very first convolutional
layer in R2D collapses the entire temporal information of
the video in single-channel feature maps, which prevent any
temporal reasoning to happen in subsequent layers. This
type of CNN architecture is illustrated in Figure 1(a). Note
that since the feature maps have no temporal meaning, we
do not perform temporal striding for this network.

3.2. f-R2D: 2D convolutions over frames

Another 2D CNN approach involves processing indepen-
dently the L frames via a series of 2D convolutional resid-
ual block. The same filters are applied to all L frames. In
this case, no temporal modeling is performed in the convo-
lutional layers and the global spatiotemporal pooling layer
at the top simply fuses the information extracted indepen-
dently from the L frames. We refer to this architecture vari-
ant as f-R2D (frame-based R2D).

3.3. R3D: 3D convolutions

3D CNNs [15, 36] preserve temporal information and
propagate it through the layers of the network. The tensor
zi is in this case 4D and has size Ni ⇥L⇥Hi ⇥Wi, where
Ni is the number of filters used in the i-th block. Each filter
is 4-dimensional and it has size Ni�1 ⇥ t ⇥ d ⇥ d where t
denotes the temporal extent of the filter (in this work, we use
t = 3, as in [36, 4]). The filters are convolved in 3D, i.e.,
over both time and space dimensions. This type of CNN
architecture is illustrated in Figure 1(d).

3.4. MCx and rMCx: mixed 3D-2D convolutions

One hypothesis is that motion modeling (i.e., 3D convo-
lutions) may be particularly useful in the early layers, while
at higher levels of semantic abstraction (late layers), motion
or temporal modeling is not necessary. Thus a plausible
architecture may start with 3D convolutions and switch to
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(a) Initial filter for Task I (b) Final filter for Task I (c) Initial filter for Task II (d) Final filter for Task II (e) Initial filter for Task III

60% pruning + re-training 33% pruning + re-trainingtraining training

Figure 1: Illustration of the evolution of a 5⇥5 filter with steps of training. Initial training of the network for Task I learns a dense filter as
illustrated in (a). After pruning by 60% (15/25) and re-training, we obtain a sparse filter for Task I, as depicted in (b), where white circles
denote 0 valued weights. Weights retained for Task I are kept fixed for the remainder of the method, and are not eligible for further pruning.
We allow the pruned weights to be updated for Task II, leading to filter (c), which shares weights learned for Task I. Another round of
pruning by 33% (5/15) and re-training leads to filter (d), which is the filter used for evaluating on task II (Note that weights for Task I, in
gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are kept fixed. This process is completed until
desired, or we run out of pruned weights, as shown in filter (e). The final filter (e) for task III shares weights learned for tasks I and II. At
test time, appropriate masks are applied depending on the selected task so as to replicate filters learned for the respective tasks.

2. Related Work

A few prior works and their variants, such as Learning
without Forgetting (LwF) [18, 22, 27] and Elastic Weight
Consolidation (EWC) [14, 16], are aimed at training a net-
work for multiple tasks sequentially. When adding a new
task, LwF preserves responses of the network on older tasks
by using a distillation loss [10], where response targets are
computed using data from the current task. As a result, LwF
does not require the storage of older training data, however,
this very strategy can cause issues if the data for the new
task belongs to a distribution different from that of prior
tasks. As more dissimilar tasks are added to the network,
the performance on the prior tasks degrades rapidly [18].
EWC tries to minimize the change in weights that are im-
portant to previous tasks through the use of a quadratic con-
straint that tries to ensure that they do not stray too far from
their initial values. Similar to LwF and EWC, we do not re-
quire the storage of older data. Like EWC, we want to avoid
changing weights that are important to the prior tasks. We,
however, do not use a soft constraint, but employ network
pruning techniques to identify the most important parame-
ters, as explained shortly. In contrast to these prior works,
adding even a very unrelated new task using our method
does not change performance on older tasks at all.

As neural networks have become deeper and larger, a
number of works have emerged aiming to reduce the size of
trained models, as well as the computation required for in-
ference, either by reducing the numerical precision required
for storing the network weights [5, 6, 12, 23], or by prun-
ing unimportant network weights [7, 8, 17, 19, 20]. Our
key idea is to use network pruning methods to free up pa-
rameters in the network, and then use these parameters to
learn a new task. We adopt the simple weight-magnitude-

based pruning method introduced in [7, 8] as it is able to
prune over 50% of the parameters of the initial network. As
we will discuss in Section 5.5, we also experimented with
the filter-based pruning of [20], obtaining limited success
due to the inability to prune aggressively. Our work is re-
lated to the very recent method proposed by Han et al. [7],
which shows that sparsifying and retraining weights of a
network serves as a form of regularization and improves
performance on the same task. In contrast, we use iterative
pruning and re-training to add multiple diverse tasks.

It is possible to limit performance loss on older tasks if
one allows the network to grow as new tasks are added. One
approach, called progressive neural networks [26], repli-
cates the network architecture for every new dataset, with
each new layer augmented with lateral connections to cor-
responding older layers. The weights of the new layers
are optimized, while keeping the weights of the old layers
frozen. The initial networks are thus unchanged, while the
new layers are able to re-use representations from the older
tasks. One unavoidable drawback of this approach is that
the size of the full network keeps increasing with the num-
ber of added tasks. The overhead per dataset added for our
method is lower than in [26] as we only store one binary pa-
rameter selection mask per task, which can further be com-
bined across tasks, as explained in the next section. Another
recent idea, called PathNet [3], uses evolutionary strategies
to select pathways through the network. They too, freeze
older pathways while allowing newly introduced tasks to
re-use older neurons. At a high hevel, our method aims at
achieving similar behavior, but without resorting to compu-
tationally intensive search over architectures or pathways.

To our knowledge, our work presents the most exten-
sive set of experiments on full-scale real image datasets and

Domain Adaptive Faster R-CNN for Object Detection in the Wild
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Abstract

Object detection typically assumes that training and test
data are drawn from an identical distribution, which, how-
ever, does not always hold in practice. Such a distribution
mismatch will lead to a significant performance drop. In
this work, we aim to improve the cross-domain robustness of
object detection. We tackle the domain shift on two levels:
1) the image-level shift, such as image style, illumination,
etc., and 2) the instance-level shift, such as object appear-
ance, size, etc. We build our approach based on the recent
state-of-the-art Faster R-CNN model, and design two do-
main adaptation components, on image level and instance
level, to reduce the domain discrepancy. The two domain
adaptation components are based on H-divergence theory,
and are implemented by learning a domain classifier in ad-
versarial training manner. The domain classifiers on dif-
ferent levels are further reinforced with a consistency regu-
larization to learn a domain-invariant region proposal net-
work (RPN) in the Faster R-CNN model. We evaluate our
newly proposed approach using multiple datasets including
Cityscapes, KITTI, SIM10K, etc. The results demonstrate
the effectiveness of our proposed approach for robust ob-
ject detection in various domain shift scenarios.

1. Introduction

Object detection is a fundamental problem in computer
vision. It aims at identifying and localizing all object in-
stances of certain categories in an image. Driven by the
surge of deep convolutional networks (CNN) [32], many
CNN-based object detection approaches have been pro-
posed, drastically improving performance [21, 51, 20, 8, 19,
39].

While excellent performance has been achieved on the
benchmark datasets [12, 37], object detection in the real
world still faces challenges from the large variance in view-
points, object appearance, backgrounds, illumination, im-
age quality, etc., which may cause a considerable domain
shift between the training and test data. Taking autonomous

Figure 1. Illustration of different datasets for autonomous driv-
ing: From top to bottom-right, example images are taken from:
KITTI[17], Cityscapes[5], Foggy Cityscapes[49], SIM10K[30].
Though all datasets cover urban scenes, images in those dataset
vary in style, resolution, illumination, object size, etc. The visual
difference between those datasets presents a challenge for apply-
ing an object detection model learned from one domain to another
domain.

driving as an example, the camera type and setup used in a
particular car might differ from those used to collect train-
ing data, and the car might be in a different city where
the appearance of objects is different. Moreover, the au-
tonomous driving system is expected to work reliably under
different weather conditions (e.g. in rain and fog), while the
training data is usually collected in dry weather with better
visibility. The recent trend of using synthetic data for train-
ing deep CNN models presents a similar challenge due to
the visual mismatch with reality. Several datasets focusing
on autonomous driving are illustrated in Figure 1, where we
can observe a considerable domain shift.

Such domain shifts have been observed to cause sig-
nificant performance drop [23]. Although collecting more
training data could possibly alleviate the impact of domain
shift, it is non-trivial because annotating bounding boxes is
expensive and time consuming. Therefore, it is highly desir-
able to develop algorithms to adapt object detection models
to a new domain that is visually different from the training
domain.

In this paper, we address this cross-domain object detec-
tion problem. We consider the unsupervised domain adap-
tation scenario: full supervision is given in the source do-
main while no supervision is available in the target domain.
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Abstract

In self-supervised learning, one trains a model to solve a
so-called pretext task on a dataset without the need for hu-
man annotation. The main objective, however, is to transfer
this model to a target domain and task. Currently, the most
effective transfer strategy is fine-tuning, which restricts one
to use the same model or parts thereof for both pretext and
target tasks. In this paper, we present a novel framework
for self-supervised learning that overcomes limitations in
designing and comparing different tasks, models, and data
domains. In particular, our framework decouples the struc-
ture of the self-supervised model from the final task-specific
fine-tuned model. This allows us to: 1) quantitatively as-
sess previously incompatible models including handcrafted
features; 2) show that deeper neural network models can
learn better representations from the same pretext task; 3)
transfer knowledge learned with a deep model to a shal-
lower one and thus boost its learning. We use this frame-
work to design a novel self-supervised task, which achieves
state-of-the-art performance on the common benchmarks in
PASCAL VOC 2007, ILSVRC12 and Places by a significant
margin. Our learned features shrink the mAP gap between
models trained via self-supervised learning and supervised
learning from 5.9% to 2.6% in object detection on PASCAL
VOC 2007.

1. Introduction
Self-supervised learning (SSL) has gained considerable

popularity since it has been introduced in computer vision
[7, 39, 23, 20]. Much of the popularity stems from the fact
that SSL methods learn features without using manual an-
notation by introducing a so-called pretext task. Feature
representations learned through SSL in computer vision are
often transferred to a target data domain and a target task,
such as object classification, detection and semantic seg-
mentation in PASCAL VOC. These learned features implic-
itly define a metric on the data, i.e., which data samples are
similar and which ones are dissimilar. Thus, the main objec-
tive of a pretext task is to learn a metric that makes images

Figure 1: Most current self-supervised learning approaches
use the same architecture both in pre-training and fine-
tuning. We develop a knowledge transfer method to decou-
ple these two architectures. This allows us to use a deeper
model in pre-training.

of the same object category similar and images of differ-
ent categories dissimilar. A natural question is then: How
do we design such a task? Some SSL approaches define
pretext tasks through explicit desirable invariances of the
metric [32, 33, 10, 23] or such that they implicitly require a
good object representation [7, 21, 39].

Even if we had a clear strategy to relate pretext tasks
to a target task, comparing and understanding which one is
better presents challenges. Most of the recent approaches
transfer their learned features to a common supervised tar-
get task. This step, however, is complicated by the need to
use the same model (e.g., AlexNet [17]) to solve both tasks.
This clearly poses a major limitation on the design choices.
For example, some pretext tasks may exploit several data
domains (e.g., sound, text, videos), or may exploit differ-
ent datasets sizes and formats, or might require very deep
neural networks to be solved.

There is thus the need to build better representations by
exploring and comparing difficult, but learnable [29], pre-
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Abstract

Self-supervision can dramatically cut back the amount
of manually-labelled data required to train deep neural net-
works. While self-supervision has usually been considered
for tasks such as image classification, in this paper we aim
at extending it to geometry-oriented tasks such as semantic
matching and part detection. We do so by building on sev-
eral recent ideas in unsupervised landmark detection. Our
approach learns dense distinctive visual descriptors from
an unlabeled dataset of images using synthetic image trans-
formations. It does so by means of a robust probabilistic
formulation that can introspectively determine which image
regions are likely to result in stable image matching. We
show empirically that a network pre-trained in this manner
requires significantly less supervision to learn semantic ob-
ject parts compared to numerous pre-training alternatives.
We also show that the pre-trained representation is excellent
for semantic object matching.

1. Introduction
One factor that limits the applicability of deep neural net-

works to many practical problems is the cost of procuring
a sufficient amount of supervised data for learning. This
explains the increasing interest in techniques that can learn
good deep representations without the use of manual super-
vision. Methods that rely on self-supervision [7, 26, 30],
in particular, can initialize deep neural networks from un-
labeled image collections. The resulting pre-trained net-
works can then be fine-tuned to solve a desired task with
far fewer manual annotations than would be required if they
were trained from scratch.

While several authors have looked at self-supervision for
tasks such as image classification and segmentation, less
work has been done on tasks that involve understanding
the geometric properties of object categories. In this pa-

⇤Authors contributed equally.
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Figure 1. Our approach leverages correspondences obtained from
synthetic warps in order to self-supervise the learning of a dense
image representation. This results in highly localized and geo-
metrically stable features. The use of a novel robust probabilistic
formulation allows to additionally predict a pixel-level confidence
map that estimates the matching ability of these features.

per, therefore, we propose a self-supervised pre-training
technique that obtains image representations suitable for
geometry-oriented tasks. We consider two representative
problems: semantic part detection and semantic matching,
both of which help to characterize the geometric structure
of objects.

Our specific goal is to pre-train convolutional neural net-
works suitable for such geometry-oriented tasks given only
a dataset of images of one or more object categories with no
bounding box, part or other types of geometric annotations.
Our approach is based on three ideas. First, we configure
the network to compute a dense field of visual descriptors.
These descriptors are learned to match corresponding ob-
ject points in different images using a pairwise loss formu-
lation. However, since no labels are given, correspondences
between images are unknown. Thus, the second idea is to
generate image pairs for which correspondences are known
by means of synthetic warps [17, 31, 34, 35]. Learning from
this data results in visual descriptors that are invariant to
image deformations, but that may not be consistent across
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Figure 2. The framework of our proposed geometry guided CNN. We firstly use the synthetic images to train a CNN, and then use the 3D
movies to further update the network.

extracted, represented as a flow map. This dataset contains
22,872 image pairs in total. We show some example images
in Figure 1.

Although the flows are represented in the same form as
classical optical flows [27], we would like to emphasize
their geometric essence. Indeed, they only reflect the lo-
cation and pose change of the foreground objects. In sharp
contrast, the conventional optical flows blend information
from a mixture of sources including object motion, cam-
era motion, background, and even lighting conditions. We
conjecture that the high precision and purity of this sig-
nal makes the learning relatively easier than from the 3D
movies to be exploited afterwards.

It is also worth noting that using the simple FlyingChair
dataset is just an easy starting point; more sophisticated syn-
thetic imagery may be explored in the future. Recent years
have witnessed emerging large-scale 3D synthetic datasets,
e.g., ShapeNet [5] which contains millions of 3D models
from thousands of categories. The intriguing observation
is that, even on this surprisingly simple 3D dataset of Fly-
ingChair, very positive results have been obtained. We
therefore envision there will be greater gains from larger
scale 3D datasets.

3.2. Geometry from real-world 3D movies

Even though the FlyingChairs has accurate flow fields,
the variability of this dataset is limited. Besides, the ar-
tifacts due to the syntheses may cause a dramatic domain
discrepancy between this dataset and real images or videos.

It has been reported that the models trained with synthesis
data perform relatively poor on the real image and video
data [29]. In order to close the domain gap, we propose
to leverage another type of geometry cue embedded in 3D
movies. In 3D movies, there are generally two views at each
time stamp that enhance the illusion of depth perceptions.
Such video frames are usually stored in a stereoscopic for-
mat. For each frame, the format includes two projections of
the same scene, one of which is exposed to the viewer’s left
eye and the other to the viewer’s right eye.

We observe that the 3D movies contain rich geometry
information that can be well utilized for learning generic
video features. Particularly, we design a task of predict-
ing the disparity map between the left and right views of
the same frame. The disparity map mainly captures the
depth of the scene. The challenge of this task is the lack
of the groundtruth disparity maps. We propose to use the
computational EpicFlow approach [28] to obtain the pseudo
groundtruth disparity maps. We keep only horizontal dis-
parities since in 3D movie the changes between the left and
right views are horizontal. In our experiments, we crawl
about 80 3D movies from the Web and sample about 40K
video frames. Figure 1 shows some example video frames
and the correspondingly estimated disparity maps.

However, it remains challenging to choose a correct ge-
ometry task and CNN architecture for using the geometry
information contained in the 3D movies. We have explored
several possible tasks and network architectures. For ex-
ample, we first experimented to directly regress the depth

(3) https://arxiv.org/abs/1804.01552
(4) http://cseweb.ucsd.edu/~haosu/papers/c
vpr18_geometry_predictive_learning.pdf
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i is often based only on the current and the latest time steps
(e.g., j = i or i� 1).

The non-local operation is also different from a fully-
connected (fc) layer. Eq.(1) computes responses based on
relationships between different locations, whereas fc uses
learned weights. In other words, the relationship between xj

and xi is not a function of the input data in fc, unlike in non-
local layers. Furthermore, our formulation in Eq.(1) supports
inputs of variable sizes, and maintains the corresponding
size in the output. On the contrary, an fc layer requires a
fixed-size input/output and loses positional correspondence
(e.g., that from xi to yi at the position i).

A non-local operation is a flexible building block and can
be easily used together with convolutional/recurrent layers.
It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us
to build a richer hierarchy that combines both non-local and
local information.

3.2. Instantiations
Next we describe several versions of f and g. Interest-

ingly, we will show by experiments (Table 2a) that our non-
local models are not sensitive to these choices, indicating
that the generic non-local behavior is the main reason for the
observed improvements.

For simplicity, we only consider g in the form of a linear
embedding: g(xj) = Wgxj , where Wg is a weight matrix
to be learned. This is implemented as, e.g., 1⇥1 convolution
in space or 1⇥1⇥1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral
filters [47], a natural choice of f is the Gaussian function. In
this paper we consider:

f(xi,xj) = ex
T
i xj . (2)

Here x

T
i xj is dot-product similarity. Euclidean distance as

used in [4, 47] is also applicable, but dot product is more
implementation-friendly in modern deep learning platforms.
The normalization factor is set as C(x) =

P
8j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian
function is to compute similarity in an embedding space. In
this paper we consider:

f(xi,xj) = e✓(xi)
T�(xj). (3)

Here ✓(xi) = W✓xi and �(xj) = W�xj are two embed-
dings. As above, we set C(x) =

P
8j f(xi,xj).

We note that the self-attention module [49] recently pre-
sented for machine translation is a special case of non-local
operations in the embedded Gaussian version. This can be
seen from the fact that for a given i, 1

C(x)f(xi,xj) becomes
the softmax computation along the dimension j. So we have

θ: 1×1×1 φ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x
Figure 2. A spacetime non-local block. The feature maps are
shown as the shape of their tensors, e.g., T⇥H⇥W⇥1024 for
1024 channels (proper reshaping is performed when noted). “⌦”
denotes matrix multiplication, and “�” denotes element-wise sum.
The softmax operation is performed on each row. The blue boxes de-
note 1⇥1⇥1 convolutions. Here we show the embedded Gaussian
version, with a bottleneck of 512 channels. The vanilla Gaussian
version can be done by removing ✓ and �, and the dot-product
version can be done by replacing softmax with scaling by 1/N .

y = softmax(xTWT
✓ W�x)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating
this recent self-attention model to the classic computer vision
method of non-local means [4], and extends the sequential
self-attention network in [49] to a generic space/spacetime
non-local network for image/video recognition in computer
vision.

Despite the relation to [49], we show that the attentional
behavior (due to softmax) is not essential in the applications
we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = ✓(xi)
T�(xj). (4)

Here we adopt the embedded version. In this case, we set the
normalization factor as C(x) = N , where N is the number of
positions in x, rather than the sum of f , because it simplifies
gradient computation. A normalization like this is necessary
because the input can have variable size.

The main difference between the dot product and embed-
ded Gaussian versions is the presence of softmax, which
plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-
tion in Relation Networks [40] for visual reasoning. We also
evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [✓(xi), �(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector
that projects the concatenated vector to a scalar. As above,
we set C(x) = N . In this case, we adopt ReLU [35] in f .
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Abstract

Several works have proposed to learn a two-path neural
network that maps images and texts, respectively, to a same
shared Euclidean space where geometry captures useful se-
mantic relationships. Such a multi-modal embedding can be
trained and used for various tasks, notably image caption-
ing. In the present work, we introduce a new architecture
of this type, with a visual path that leverages recent space-
aware pooling mechanisms. Combined with a textual path
which is jointly trained from scratch, our semantic-visual
embedding offers a versatile model. Once trained under the
supervision of captioned images, it yields new state-of-the-
art performance on cross-modal retrieval. It also allows the
localization of new concepts from the embedding space into
any input image, delivering state-of-the-art result on the vi-
sual grounding of phrases.

1. Introduction

Text and image understanding is progressing fast thanks
to the ability of artificial neural nets to learn, with or with-
out supervision, powerful distributed representations of in-
put data. At runtime, such nets embed data into high-
dimensional feature spaces where semantic relationships
are geometrically captured and can be exploited to accom-
plish various tasks. Off-the-shelf already trained nets are
now routinely used to extract versatile deep features from
images which can be used for recognition or editing tasks,
or to turn words and sentences into vectorial representations
that can be mathematically analysed and manipulated.

Recent works have demonstrated how such deep repre-
sentations of images and texts can be jointly leveraged to
build visual-semantic embeddings [11, 17, 20, 33]. The
ability to map natural images and texts in a shared repre-
sentation space where geometry (distances and directions)
might be interpreted is a powerful unifying paradigm. Not

Figure 1. Concept localization with proposed semantic-visual
embedding. Not only does our deep embedding allows cross-
modal retrieval with state-of-the-art performance, but it can also
associate to an image, e.g., the hamburger plate on the left, a lo-
calization heatmap for any text query, as shown with overlays for
three text examples. The circled blue dot indicates the highest peak
in the heatmap.

only does it permit to revisit visual recognition and caption-
ing tasks, but it also opens up new usages, such as cross-
modal content search or generation.

One popular approach to semantic-visual joint embed-
ding is to connect two mono-modal paths with one or mul-
tiple fully connected layers [20, 17, 39, 10, 2]: A visual path
based on a pre-trained convolutional neural network (CNN)
and a text path based on a pre-trained recurrent neural net-
work (RNN) operating on a given word embedding. Using
aligned text-image data, such as images with multiple cap-
tions from MS-COCO dataset [26], final mapping layers can
be trained, along with the optional fine-tuning of the two
branches. Building on this line of research, we investigate
new pooling mechanisms in the visual path. Inspired by re-
cent work on weakly supervised object localization [45, 7],
we propose in particular to leverage selective spatial pool-
ing with negative evidence proposed in [7] to improve vi-
sual feature extraction without resorting, e.g., to expensive
region proposal strategies. Another important benefit of the
proposed joint architecture is that, once trained, it allows
localization of arbitrary concepts within arbitrary images:
Given an image and the embedding of a text (or any point
of the embedding space), we propose a mechanism to com-
pute a localization map, as demonstrated in Fig. 1.
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(a) Initial filter for Task I (b) Final filter for Task I (c) Initial filter for Task II (d) Final filter for Task II (e) Initial filter for Task III

60% pruning + re-training 33% pruning + re-trainingtraining training

Figure 1: Illustration of the evolution of a 5⇥5 filter with steps of training. Initial training of the network for Task I learns a dense filter as
illustrated in (a). After pruning by 60% (15/25) and re-training, we obtain a sparse filter for Task I, as depicted in (b), where white circles
denote 0 valued weights. Weights retained for Task I are kept fixed for the remainder of the method, and are not eligible for further pruning.
We allow the pruned weights to be updated for Task II, leading to filter (c), which shares weights learned for Task I. Another round of
pruning by 33% (5/15) and re-training leads to filter (d), which is the filter used for evaluating on task II (Note that weights for Task I, in
gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are kept fixed. This process is completed until
desired, or we run out of pruned weights, as shown in filter (e). The final filter (e) for task III shares weights learned for tasks I and II. At
test time, appropriate masks are applied depending on the selected task so as to replicate filters learned for the respective tasks.

2. Related Work

A few prior works and their variants, such as Learning
without Forgetting (LwF) [18, 22, 27] and Elastic Weight
Consolidation (EWC) [14, 16], are aimed at training a net-
work for multiple tasks sequentially. When adding a new
task, LwF preserves responses of the network on older tasks
by using a distillation loss [10], where response targets are
computed using data from the current task. As a result, LwF
does not require the storage of older training data, however,
this very strategy can cause issues if the data for the new
task belongs to a distribution different from that of prior
tasks. As more dissimilar tasks are added to the network,
the performance on the prior tasks degrades rapidly [18].
EWC tries to minimize the change in weights that are im-
portant to previous tasks through the use of a quadratic con-
straint that tries to ensure that they do not stray too far from
their initial values. Similar to LwF and EWC, we do not re-
quire the storage of older data. Like EWC, we want to avoid
changing weights that are important to the prior tasks. We,
however, do not use a soft constraint, but employ network
pruning techniques to identify the most important parame-
ters, as explained shortly. In contrast to these prior works,
adding even a very unrelated new task using our method
does not change performance on older tasks at all.

As neural networks have become deeper and larger, a
number of works have emerged aiming to reduce the size of
trained models, as well as the computation required for in-
ference, either by reducing the numerical precision required
for storing the network weights [5, 6, 12, 23], or by prun-
ing unimportant network weights [7, 8, 17, 19, 20]. Our
key idea is to use network pruning methods to free up pa-
rameters in the network, and then use these parameters to
learn a new task. We adopt the simple weight-magnitude-

based pruning method introduced in [7, 8] as it is able to
prune over 50% of the parameters of the initial network. As
we will discuss in Section 5.5, we also experimented with
the filter-based pruning of [20], obtaining limited success
due to the inability to prune aggressively. Our work is re-
lated to the very recent method proposed by Han et al. [7],
which shows that sparsifying and retraining weights of a
network serves as a form of regularization and improves
performance on the same task. In contrast, we use iterative
pruning and re-training to add multiple diverse tasks.

It is possible to limit performance loss on older tasks if
one allows the network to grow as new tasks are added. One
approach, called progressive neural networks [26], repli-
cates the network architecture for every new dataset, with
each new layer augmented with lateral connections to cor-
responding older layers. The weights of the new layers
are optimized, while keeping the weights of the old layers
frozen. The initial networks are thus unchanged, while the
new layers are able to re-use representations from the older
tasks. One unavoidable drawback of this approach is that
the size of the full network keeps increasing with the num-
ber of added tasks. The overhead per dataset added for our
method is lower than in [26] as we only store one binary pa-
rameter selection mask per task, which can further be com-
bined across tasks, as explained in the next section. Another
recent idea, called PathNet [3], uses evolutionary strategies
to select pathways through the network. They too, freeze
older pathways while allowing newly introduced tasks to
re-use older neurons. At a high hevel, our method aims at
achieving similar behavior, but without resorting to compu-
tationally intensive search over architectures or pathways.

To our knowledge, our work presents the most exten-
sive set of experiments on full-scale real image datasets and
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Abstract

We investigate omni-supervised learning, a special
regime of semi-supervised learning in which the learner ex-
ploits all available labeled data plus internet-scale sources
of unlabeled data. Omni-supervised learning is lower-
bounded by performance on existing labeled datasets, of-
fering the potential to surpass state-of-the-art fully super-
vised methods. To exploit the omni-supervised setting, we
propose data distillation, a method that ensembles predic-
tions from multiple transformations of unlabeled data, us-
ing a single model, to automatically generate new training
annotations. We argue that visual recognition models have
recently become accurate enough that it is now possible to
apply classic ideas about self-training to challenging real-
world data. Our experimental results show that in the cases
of human keypoint detection and general object detection,
state-of-the-art models trained with data distillation sur-
pass the performance of using labeled data from the COCO
dataset alone.

1. Introduction

This paper investigates omni-supervised learning, a
paradigm in which the learner exploits as much well-
annotated data as possible (e.g., ImageNet [6], COCO [24])
and is also provided with potentially unlimited unlabeled
data (e.g., from internet-scale sources). It is a special regime
of semi-supervised learning. However, most research on
semi-supervised learning has simulated labeled/unlabeled
data by splitting a fully annotated dataset and is there-
fore likely to be upper-bounded by fully supervised learn-
ing with all annotations. On the contrary, omni-supervised
learning is lower-bounded by the accuracy of training on
all annotated data, and its success can be evaluated by how
much it surpasses the fully supervised baseline.

To tackle omni-supervised learning, we propose to per-
form knowledge distillation from data, inspired by [3, 18]
which performed knowledge distillation from models. Our
idea is to generate annotations on unlabeled data using a
model trained on large amounts of labeled data, and then
retrain the model using the extra generated annotations.
However, training a model on its own predictions often pro-
vides no meaningful information. We address this problem

model A

model B

model C

image ensemble

student model predict

Model Distillation

student model predict

ensembleimage

transform A model A

transform B

transform C

Data Distillation

model A

model A

Figure 1. Model Distillation [18] vs. Data Distillation. In data
distillation, ensembled predictions from a single model applied to
multiple transformations of an unlabeled image are used as auto-
matically annotated data for training a student model.

by ensembling the results of a single model run on different
transformations (e.g., flipping and scaling) of an unlabeled
image. Such transformations are widely known to improve
single-model accuracy [20] when applied at test time, indi-
cating that they can provide nontrivial knowledge that is not
captured by a single prediction. In other words, in compar-
ison with [18], which distills knowledge from the predic-
tions of multiple models, we distill the knowledge of a sin-
gle model run on multiple transformed copies of unlabeled
data (see Figure 1).

Data distillation is a simple and natural approach based
on “self-training” (i.e., making predictions on unlabeled
data and using them to update the model), related to which
there have been continuous efforts [36, 48, 43, 33, 22, 46,
5, 21] dating back to the 1960s, if not earlier. However,
our simple data distillation approach can become realistic
largely thanks to the rapid improvement of fully-supervised
models [20, 39, 41, 16, 12, 11, 30, 28, 25, 15] in the past
few years. In particular, we are now equipped with accu-
rate models that may make fewer errors than correct pre-
dictions. This allows us to trust their predictions on unseen
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We investigate omni-supervised learning, a special
regime of semi-supervised learning in which the learner ex-
ploits all available labeled data plus internet-scale sources
of unlabeled data. Omni-supervised learning is lower-
bounded by performance on existing labeled datasets, of-
fering the potential to surpass state-of-the-art fully super-
vised methods. To exploit the omni-supervised setting, we
propose data distillation, a method that ensembles predic-
tions from multiple transformations of unlabeled data, us-
ing a single model, to automatically generate new training
annotations. We argue that visual recognition models have
recently become accurate enough that it is now possible to
apply classic ideas about self-training to challenging real-
world data. Our experimental results show that in the cases
of human keypoint detection and general object detection,
state-of-the-art models trained with data distillation sur-
pass the performance of using labeled data from the COCO
dataset alone.

1. Introduction

This paper investigates omni-supervised learning, a
paradigm in which the learner exploits as much well-
annotated data as possible (e.g., ImageNet [6], COCO [24])
and is also provided with potentially unlimited unlabeled
data (e.g., from internet-scale sources). It is a special regime
of semi-supervised learning. However, most research on
semi-supervised learning has simulated labeled/unlabeled
data by splitting a fully annotated dataset and is there-
fore likely to be upper-bounded by fully supervised learn-
ing with all annotations. On the contrary, omni-supervised
learning is lower-bounded by the accuracy of training on
all annotated data, and its success can be evaluated by how
much it surpasses the fully supervised baseline.

To tackle omni-supervised learning, we propose to per-
form knowledge distillation from data, inspired by [3, 18]
which performed knowledge distillation from models. Our
idea is to generate annotations on unlabeled data using a
model trained on large amounts of labeled data, and then
retrain the model using the extra generated annotations.
However, training a model on its own predictions often pro-
vides no meaningful information. We address this problem
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Figure 1. Model Distillation [18] vs. Data Distillation. In data
distillation, ensembled predictions from a single model applied to
multiple transformations of an unlabeled image are used as auto-
matically annotated data for training a student model.

by ensembling the results of a single model run on different
transformations (e.g., flipping and scaling) of an unlabeled
image. Such transformations are widely known to improve
single-model accuracy [20] when applied at test time, indi-
cating that they can provide nontrivial knowledge that is not
captured by a single prediction. In other words, in compar-
ison with [18], which distills knowledge from the predic-
tions of multiple models, we distill the knowledge of a sin-
gle model run on multiple transformed copies of unlabeled
data (see Figure 1).

Data distillation is a simple and natural approach based
on “self-training” (i.e., making predictions on unlabeled
data and using them to update the model), related to which
there have been continuous efforts [36, 48, 43, 33, 22, 46,
5, 21] dating back to the 1960s, if not earlier. However,
our simple data distillation approach can become realistic
largely thanks to the rapid improvement of fully-supervised
models [20, 39, 41, 16, 12, 11, 30, 28, 25, 15] in the past
few years. In particular, we are now equipped with accu-
rate models that may make fewer errors than correct pre-
dictions. This allows us to trust their predictions on unseen

1

ar
X

iv
:1

71
2.

04
44

0v
1 

 [c
s.C

V
]  

12
 D

ec
 2

01
7

4.



żŐ�º�}�Ȍǥm0*-1“
•Nim]]r](Yf?(@p[alYlagf�I]logjck

– >II¡ÜúĄåĀ�<ll]flagfŜȶ½ȭĦ
• ϋ®ƭ®̍¡ÜúĄåĀ�ħ��<ll]flagf½ȱ~¹N@�=dg[c½ȭĦ
• DeY_]I]l-+,2�,Ʀ¡åÝáăjË
• ���N@I]l½ǝ��ĝŀ�IDKN¡Ȍǥ��·ª·Ġ��¹

4/



żŐ�º�}�Ȍǥm1*-1“
•Aaf?af_�Z]Yfk�af�Zmj_]jk

– ǲ͈č�·ȱ~·º�˞ɍ¡ƪŅ½Ġ��¹ɠʉ
– ˞ɍ�ǲ͈ðËáĀ½ĥĐǾ͑ȗĬ�ŗ˶

• ʣĭĩ¢>dYkk�<[lanYlagf�HYhhaf_�Έ�Ĩŀ�êjáõÝï½ď
ĺ��ĂjÈþÂÖ

Finding beans in burgers:
Deep semantic-visual embedding with localization

Martin Engilberge1,2, Louis Chevallier2, Patrick Pérez2, Matthieu Cord1
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Abstract

Several works have proposed to learn a two-path neural
network that maps images and texts, respectively, to a same
shared Euclidean space where geometry captures useful se-
mantic relationships. Such a multi-modal embedding can be
trained and used for various tasks, notably image caption-
ing. In the present work, we introduce a new architecture
of this type, with a visual path that leverages recent space-
aware pooling mechanisms. Combined with a textual path
which is jointly trained from scratch, our semantic-visual
embedding offers a versatile model. Once trained under the
supervision of captioned images, it yields new state-of-the-
art performance on cross-modal retrieval. It also allows the
localization of new concepts from the embedding space into
any input image, delivering state-of-the-art result on the vi-
sual grounding of phrases.

1. Introduction

Text and image understanding is progressing fast thanks
to the ability of artificial neural nets to learn, with or with-
out supervision, powerful distributed representations of in-
put data. At runtime, such nets embed data into high-
dimensional feature spaces where semantic relationships
are geometrically captured and can be exploited to accom-
plish various tasks. Off-the-shelf already trained nets are
now routinely used to extract versatile deep features from
images which can be used for recognition or editing tasks,
or to turn words and sentences into vectorial representations
that can be mathematically analysed and manipulated.

Recent works have demonstrated how such deep repre-
sentations of images and texts can be jointly leveraged to
build visual-semantic embeddings [11, 17, 20, 33]. The
ability to map natural images and texts in a shared repre-
sentation space where geometry (distances and directions)
might be interpreted is a powerful unifying paradigm. Not

Figure 1. Concept localization with proposed semantic-visual
embedding. Not only does our deep embedding allows cross-
modal retrieval with state-of-the-art performance, but it can also
associate to an image, e.g., the hamburger plate on the left, a lo-
calization heatmap for any text query, as shown with overlays for
three text examples. The circled blue dot indicates the highest peak
in the heatmap.

only does it permit to revisit visual recognition and caption-
ing tasks, but it also opens up new usages, such as cross-
modal content search or generation.

One popular approach to semantic-visual joint embed-
ding is to connect two mono-modal paths with one or mul-
tiple fully connected layers [20, 17, 39, 10, 2]: A visual path
based on a pre-trained convolutional neural network (CNN)
and a text path based on a pre-trained recurrent neural net-
work (RNN) operating on a given word embedding. Using
aligned text-image data, such as images with multiple cap-
tions from MS-COCO dataset [26], final mapping layers can
be trained, along with the optional fine-tuning of the two
branches. Building on this line of research, we investigate
new pooling mechanisms in the visual path. Inspired by re-
cent work on weakly supervised object localization [45, 7],
we propose in particular to leverage selective spatial pool-
ing with negative evidence proposed in [7] to improve vi-
sual feature extraction without resorting, e.g., to expensive
region proposal strategies. Another important benefit of the
proposed joint architecture is that, once trained, it allows
localization of arbitrary concepts within arbitrary images:
Given an image and the embedding of a text (or any point
of the embedding space), we propose a mechanism to com-
pute a localization map, as demonstrated in Fig. 1.
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triplets. Following [10], we resort to batch-based hard min-
ing, but we depart from this work, and from other related
approaches, in the way we handle localization information.

Cross-modal embedding and localization Existing
works that combine localization and multimodal embedding
rely on a two-step process. First, regions are extracted ei-
ther by a dedicated model, e.g., EdgeBox in [39], or by a
module in the architecture. Then the embedding space is
used to measure the similarity between these regions and
textual data. [31, 17] use this approach on the dense cap-
tioning task to produce region annotations. It is also used
for phrase localization by [39] where the region with the
highest similarity with the phrase is picked.

To address this specific problem of phrase grounding,
Xiao et al. [42] recently proposed to learn jointly a simi-
larity score and an attention mask. The model is trained
using a structural loss, leveraging the syntactic structure of
the textual data to enforce corresponding structure in the at-
tention mask.

In contrast to these works, our approach to spatial local-
ization in semantic-visual embedding is weakly supervised
and does not rely on a region extraction model. Instead, we
take inspiration from other works on weakly supervised vi-
sual localization to design our architecture, with no need for
a location-dependent loss.

Weakly supervised localization The task of generating
image descriptors that include localization information has
also been explored. A number of weakly supervised ob-
ject localization approaches extrapolate localization fea-
tures while training an image classifier, e.g., [45, 7, 5]. The
main strategy consists in using a fully convolutional deep
architecture that postpones the spatial aggregation (pooling)
at the very last layer of the net. It can be used both for clas-
sification and for object detection.

We follow the same strategy, but in the context of multi-
modal embedding learning, hence with a different goal. In
particular, richer semantics is sought (and used for training)
in the form of visual description, whether at the scene or at
the object level.

3. Approach
The overall structure of the proposed approach, shown in

Fig. 2, follows the dual-path encoding architecture of Kiros
et al. [20]. We first explain its specifics before turning to its
training with a cross-modal triplet ranking loss.

3.1. Semantic-visual embedding architecture

Visual path In order to accommodate variable size images
and to benefit from the performance of very deep architec-
tures, we rely on fully convolutional residual ResNet-152
[13] as our base visual network. Its penultimate layer out-
puts a stack of D = 2048 feature maps of size (w, h) =

Figure 2. Two-path multi-modal embedding architecture. Im-
ages of arbitrary size and text of arbitrary length pass through ded-
icated neural networks to be mapped into a shared representation
vector space. The visual path (blue) is composed of a fully con-
volutional neural network (ResNet in experiments), followed by a
convolutional adaptation layer, a pooling layer that aggregates pre-
vious feature maps into a vector and a final projection to the final
output space; The textual path (orange) is composed of a recurrent
net running on sequences of text tokens individually embedded
with an off-the-shelf map (word2vec in experiments).

(

W
32

, H
32

), where (W,H) is the spatial size of the input im-
age. These feature maps retain coarse spatial information
that lends itself to spatial reasoning in subsequent layers.
Following the weakly supervised learning framework pro-
posed by Durand et al. [7, 6], we first transform this stack
through a linear adaptation layer of 1 ⇥ 1 convolutions.
While in WELDON [7] and in WILDCAT [6] the resulting
maps are class-related (one map per class in the former, a
fixed number of maps per class in the latter), we do not ad-
dress classification or class detection here.

Hence we empirically set the number D0 of these new
maps to a large value, 2400 in our experiments. A pool-
ing à la WELDON is then used, but again in the absence of
classes, to turn these maps into vector representations of di-
mension D0. A linear projection with bias, followed by `

2

normalization accomplishes the last step to the embedding
space of dimension d.

More formally, the visual embedding path is defined as
follows:

I
f✓07��! F

g✓17��! G
sPool7���! h 2 RD0 p✓27��! x 2 Rd, (1)

where: I 2 (0, 255)W⇥H⇥3 is the input color image,
f✓0(I) 2 Rw⇥h⇥D

+

is the output of ResNet’s conv5 pare-
matrized by weights in ✓

0

, g✓1 is a convolution layer with
|✓

1

| = D ⇥ D0 weights and with activation in Rw⇥h⇥D0
,

sPool is the selective spatial pooling with negative evidence
defined in [7]:

h[k] = maxG[:, :, k] + minG[:, :, k], k = 1 · · ·D0, (2)

and p✓2 is an `
2

-normalized affine function

p✓2(h) =
Ah+ b

kAh+ bk
2

, (3)

where ✓
2

= (A,b) is of size (D0
+1)⇥ d. We shall denote

x = F (I;✓
0:2

) for short this visual embedding.
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Abstract
Training robust deep video representations has proven to

be much more challenging than learning deep image repre-
sentations. This is in part due to the enormous size of raw
video streams and the high temporal redundancy; the true
and interesting signal is often drowned in too much irrel-
evant data. Motivated by that the superfluous information
can be reduced by up to two orders of magnitude by video
compression (using H.264, HEVC, etc.), we propose to train
a deep network directly on the compressed video.

This representation has a higher information density,
and we found the training to be easier. In addition, the sig-
nals in a compressed video provide free, albeit noisy, motion
information. We propose novel techniques to use them effec-
tively. Our approach is about 4.6 times faster than Res3D
and 2.7 times faster than ResNet-152. On the task of action
recognition, our approach outperforms all the other meth-
ods on the UCF-101, HMDB-51, and Charades dataset.

1. Introduction
Video commands the lion’s share of internet traffic at

70% and rising [24]. Most cell phone cameras now capture
high resolution videos in addition to images. Many real-
world data sources are video based, ranging from inventory
systems at warehouses to self-driving cars or autonomous
drones. Video is also arguably the next frontier in computer
vision, as it captures a wealth of information still images
cannot convey. Videos carry more emotion [32], allow us to
predict the future to a certain extent [23], provide temporal
context and give us better spatial awareness [26]. Unfortu-
nately, very little of this information is currently exploited.

State-of-the-art deep learning models for video analysis
are quite basic. Most of them naı̈vely use convolutional neu-
ral networks (CNNs) designed for images to parse a video
frame by frame. They often demonstrate results no better

⇤Part of this work performed while interning at Amazon.

Our	CNN

Traditional	CNN

P-frameI-frame P-frame P-frame

Decoded
Stream

Compressed
Stream

Codec

Figure 1: Traditional architectures first decode the video
and then feed it into a network. We propose to use the com-
pressed video directly.

than hand-crafted techniques [16, 42]. So, why did deep
learning not yet make as transformative of an impact on
video tasks, such as action recognition, as it did on images?

We argue that the reason is two-fold. First, videos have
a very low information density, as 1h of 720p video can
be compressed from 222GB raw to 1GB. In other words,
videos are filled with boring and repeating patterns, drown-
ing the ‘true’ and interesting signal. The redundancy makes
it harder for CNNs to extract meaningful information, and
makes the training much slower. Second, with only RGB
images, learning temporal structure is difficult. A vast
body of literature attempts to process videos as RGB im-
age sequences, either with 2D CNNs, 3D CNNs, or recur-
rent neural networks (RNNs), but has yielded limited suc-
cess [16, 40]. Using precomputed optical flow almost al-
ways boosts the performance [2].
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Accuracy (%)
GFLOPs UCF-101 HMDB-51

ResNet-50 [8] 3.8 82.3 48.9
ResNet-152 [8] 11.3 83.4 46.7
C3D [39] 38.5 82.3 51.6
Res3D [40] 19.3 85.8 54.9
CoViAR 4.2 90.4 59.1

Table 3: Network computation complexity and accuracy of
each method. Our method is 4.6x more efficient than state-
of-the-art 3D CNN, while being much more accurate.

Preprocess CNN CNN
(sequential) (concurrent)

Two-stream
BN-Inception 75.0 1.6 0.9
ResNet-152 75.0 7.5 4.0

CoViAR 2.87/0.46 1.3 0.3

Table 4: Speed (ms) per frame. CoViAR is fast in both pre-
processing and CNN computation. Its preprocessing speed
is presented for both single-thread / multi-thread settings.

4.2. Speed and Efficiency

Our method is efficient because the computation on the
I-frame is shared across multiple frames, and the compu-
tation on P-frames is cheaper. Table 3 compares the CNN
computational cost of our method with state-of-the-art 2D
and 3D CNN architectures. Since for our model the P-
and I-frame computational costs are different, we report the
average GFLOPs over all frames. As shown in the table,
CoViAR is 2.7 times faster than ResNet-152 [12] and is 4.6
times more than Res3D [40], while being significantly more
accurate.

A more detailed speed analysis is presented in Table 4.
The preprocessing time of the two-stream methods, i.e. op-
tical flow computation, is measured on a Tesla P100 GPU
with an implementation of the TV-L1 flow algorithm from
OpenCV. Our preprocessing, i.e. the calculation of the ac-
cumulated motion vectors and residuals, is measured on In-
tel E5-2698 v4 CPUs. CNN time is measured on the same
P100 GPU. We can see that the optical flow computation
is the bottleneck for two-stream networks, even with low-
resolution 256 ⇥ 340 videos. Our preprocessing is much
faster despite our CPU-only implementation.

For CNN time, we consider both settings where (i) we
can forward multiple CNNs at the same time, and (ii) we do
it sequentially. For both settings, our method is significantly
faster than traditional methods. Overall, our method can be
up to 100 times faster than traditional methods with multi-
thread preprocessing, running at 1,300 frames per second.
Figure 6 summarizes the results. CoViAR achieves the best
efficiency and good accuracy, while requiring a far lesser
amount of data.
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Figure 6: Speed and accuracy on UCF-101 [34], compared
to a two-stream network (TSN) [33, 44], Res3D [40], and
ResNet-152 [12] trained on RGB frames. Node size denotes
the input data size. Training on compressed videos is both
accurate and efficient.

UCF-101 HMDB-51
CoViAR Flow CoViAR CoViAR Flow CoViAR

+flow +flow

Split 1 90.8 87.7 94.0 60.4 61.8 71.5
Split 2 90.5 90.2 95.4 58.2 63.7 69.4
Split 3 90.0 89.1 95.2 58.7 64.2 69.7
Average 90.4 89.0 94.9 59.1 63.2 70.2

Table 5: Action recognition accuracy on UFC-101 [34] and
HMDB-51 [18]. Combining our model with a temporal-
stream network achieves state-of-the-art performance.

4.3. Accuracy

We now compare the accuracy of CoViAR with state-of-
the-art models in Table 6. For fair comparison, here we fo-
cus on models using the same pre-training dataset, ILSVRC
2012-CLS [4]. While pre-training using Kinetics yields bet-
ter performance [2], since it is larger and more similar to
the datasets used in this paper, those results are not directly
comparable.

From the upper part of the table, we can see that
our model significantly outperforms traditional RGB-image
based methods. C3D [39], Res3D [40], P3D ResNet [27],
and I3D [2] consider 3D convolution to learn temporal
structures. Karpathy et al. [16] and TLE [5] consider more
complicated fusions and pooling. MV-CNN [50] apply dis-
tillation to transfer knowledge from an optical-flow-based
model. Our method uses much faster 2D CNNs plus simple
late fusion without additional supervision, and still signifi-
cantly outperforms these methods.

†Despite our best efforts, we were not able to reproduce the perfor-
mance reported in the original paper. Here we report the performance
based on our implementation. For fair comparison, we use the same data
augmentation and architecture as ours. Training follows the 2-stage pro-
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