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II. RELATED WORK
A. Traffic data and approaches to its representation

Several practical databases for pedestrian detection, such
as the French Institute for Research in Computer Science
and Automation (INRIA) Dataset [3], Caltech [4], and the
KITTI Vision Benchmark Suite for self-driving cars [2])
have been proposed in the past decade. The information
contained in the KITTI database, which has been used to
set meaningful vision problems for self-driving cars [2]
as well as problems related to stereo vision, optical flow,
visual odometry, semantic segmentation, two- and three-
dimensional (2D/3D) object detection, and 2D/3D tracking,
has proven especially useful.

In 2015, these problems were updated for stereo and
optical flow [5]. Thanks to the development of sophis-
ticated approaches, such as fully convolutional networks
(FCN) [6] and region-based convolutional neural networks
(R-CNN) [7], there has been improved performance of
solving these problems using the KITTI benchmark dataset.
In addition, a manner of geometry allows us to improve the
rate of object detection [8] and optical flow [9] not only in
stereo [10]. As for semantic segmentation, we can now obtain
knowledge about dense connections and use this information
with graphical models [11], [12].

Unfortunately, none of these datasets contain scenes of
near-miss incidents in which pedestrians, cyclists, or other
vehicles must be avoided. Thus, there is an urgent need
for a collection of incident scenes that can be used to train

self-driving cars on how to safely navigate such dangerous Eﬁiy (: E Related WO rk%% < : cl:_% L/

situations.
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Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?

Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Instiute of Advanced Industrial Science and Technology (AIST)
“Tsukuba, Ibaraki, Japan

{kensho.hara, hirokatsu kataoka, yu.satou}Gaist.go.ip

Abstract

The purpose of thissudy s to determine whether current

improved signiicanly. However,to date, conventional re-
search has nly explored elasvlyshallow 3Darchiecures.
We examine the architctures of various 3D CNN from rel-
atively shallow i very deep ones on current video datases
Based onshe resuts ofhose experimens,the ollowing con-
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[oom

in significant ovefting for UCF-101, HMDB.S1, and Ac-
tivityet hut ot for Kinescs. (i) The Kinetics dataset has
suffcient data or trainin of deep 3 CNNs, and enables
naining of up 10 152 ResNets layers, interestingl similar
020> ResNets on IageNe. ResNeXG- 101 achieved 784%
average accuracy om the Kinetcs et se. (i) Kinetics pre-
ranedsngle Dardicenre o conler2Der
chiectures,and Ined ResNeX'-10] achiered 94.5%
P Ty ——

cant progress in various tasks
g dey 3D CANo cgther with Kinss il e
successful hisiory of 2 CNNs and ImageNet, and stin
are advances in compurer visionfor videos. The codes and
premained models sed in his suds are publicly available .

1. Introduction

The use of arge-sca daases is extemely important
when using deep consolutional neural networks (CNN),
which have massive parameter aumbers, and the e of
CNNs in the fied of computer vision has expanded sgnif-
cantly in ecent years. nigeNet 1], which ncludes more

hecps: /7Lt com/kenshaara/ 30 Sestets-PyTorch

—um

6 UCE-101 Gpl 1. ) HMDB 5p 1)

P o Rt v b o s s )
i vidns (oo, The s of vty a2 CNN i on
et et cusanding ogres i mae coglin

o et Co e e o ) NN i o
Kines snrls Sl g compaer vison for s

han & millon images, has contrbuted substanialy o the
o of st v bsd s, Ty i

such largescale datasets, o e number qr«wmm
oo et e 1], b b e 0

i somewhat lager video dataset, s becore avlble,
and it e has ke it possble 0 accomplish aditionsl

st s gy vt 1 postion ey e
inelation o e e, Mre an 300 K videos e

oo Kieis et i meas it he
e f i Gt s bt st e
datsers.

el ) comolon s GD CN e
thtvo-dinensions](2D)
e s e a0 141 35 OO e

e s of praners o
o much gt han e

NNecunony e ranodonviden
it vumm canbe precined on et
Recenty achieved a sig-

H
on
i
2ol
o
5 s o 3D RN - 05

MlheKMelMquanmmr Acsuracy v improne s etwors
s i T mpornens ot il g b

ESCN

including 28,000 cton nstances, ActviyNetlsoprovides
some addiions ask

e Kt Gt et compastle vl e i of
InageNel, even though te resits

detction, but the number o action instances i il on the
orderoftens ofthousands. This year (2017, inan efort to
ereate a successul prtsaned model, Kay . released the
Kineics daast (1] ‘Th Kinctis dtse ncudes more
hin 300000 tinmed videos conring 100 caegories, In
ko e et i i o 3D N

DO o T DS
e o e 20 s ekl ey
Carneica

performance (1]
I, though they

we peroried 4 using these ecent

e .
Other huge datasers such s SporteIM [15] and
Yl (1] ke P o, A e
are larger than Kinetcs, their annotatons are

S sty oty i e ot e e

sgned. (In other words, ey include frames that do not
ol o target actons,) Such noie and the presence of
unrelted frames have th potental 0 pevent hese models
nadition,with e 25 in

St 155 e sy o same 15
o R 15 T et e i 2 s o
InageNet [ 0]

s thei fine-tuning. The resuls of those xpriments (e
Section 4 for deais) show the Kinetics dataset ca ain
30 ReNec52 from srach 0 et i s o
2D ResNets on ImageNet, as

hant o vig e K a5
e infltion of 2D Kernes pretrined on ImageNet i
ones 2], Thus, we now e the hencfitof  sophisticated

Showen in Figure 2. Based on those resuls, we will discuss
the possibiltes offurure progress inacton recogaiion and
er video sks

Howerer,can 3D

sty of
N TNt v ety o o o

3D
iton Previous s doved deper 2D CNNs ined

i action ecogniton and cher varous asks? (See botom
o in Figure 1) To achiove such progs consider
At Kinetis for 3D NN shoukd be s brge scale s e

lowerer, it
Kot vl o show depr 9D CNR e et e

e previous st b th it Sl of g dasls
difrs fom that of video ones. “The fesuls of thi stdy,

eNetfor 2DCNN;
cics, Comsentonil 3D CNN

10 CNNs, and the use of very deep CNNs trained on I
4 e scqustion of gt e

aation: Usig soch e reprsenaion, I

gy e e prkwnance of e mm

o il 0 Kt il ey shllon
i 11 g e Kios
atereni vy e D ONNC o ol o

nmageNet, which can in 152 layer 2D CNNs [

Vi

mage captioniag (see op ron in Figure 1)

T his sy, we examine various 3D CNN archiectures

Tod

nition datascs. Representatve video datases, such s UCF-
101171 and HMDB-S1 [17], can be sed 0 provide ealstc

deos il s stound 10K bt v ey il
used s standard benchmarks, suchdatasetsare bviously o0
il o b o otimsing NN epeseninions from
sertch. Tn the st coupl of years, ActiityNet [, which

€1 AcviyNet. @ Kietes.

101 MDD 51

101, HMDB.S51, and
ActvityNet) in onder o provide us nsights fo answering
e above quesion N archiectues tested in
i sy e bied o sl ety R 10
and thei extended versions | 1] beceuse they
e sl and llcve srucaes. Accordnly, sng
those datasets, we performed several experiments ined at

sl 0 18, theie scales e simply 100 e to allow
hem 10 be uilized easiy. Becsuse of these fsues, we will
e o s e et o Sty

22. Action Recogn

fon Approaches

One o the portar s o O b st
ecogaiion s the use of ta-sican CNNs with 2D con-
olonl Kol 1nhie . Syt s propocd
i 1t s G stk k) o e

 and motion inormtion b [20],
nd ol o ooy e ot e 51
ity 1o improve action ecognition accuracy.  Since that
Sy, numerous methods based on the v
i e proposd 1 imprve acon cognion e
mance [0,

Unlie the anwm:rrnlmned approsches. we focused on
‘NN with 3D comvolutonal Kernels, which hive recenty
ezun oouteriorn 3D CNRS rosh e e of e sl
viden darasrs. These 3D CNNs are inuiisely ofective

videos.

2. Related Work
2.1. Video Datasets

e HMDB-S1 [17] nd UCE-101 |21 datasets are cur
ity e st sl I e ek of ston cogl

bocanse such "
Spatio-emporal eatures from e videas. For exampl, J

st 1], Since dhat sy, C3D has heen seen s 3
4 fcto sandd o 3D CNNS They s cxpermntaly
dinata 13

ResNetarciectures oo 3D CNNs |

3. Experimental configuration
31 Summary

Inhis study, in onder t deermine whether cutent video
datasets e suficient data for tning of eep 3D CNs,
e conditd e e eperimens Gl o
g UCT00 [ VDS [ e [3], and
Ko 114 W ) camied h g of sl
o 1 XN ot s i o e
cording 10 previous works |9, 10], 3D CNNs trained on
UCE-101, HIMDB 51, and ActviyNet o not achiese high
sccuracy whereas ons tained on Kinetcs work well, Wetry
0 reproduce such s

e it s o dap 3D CNNe
e RN 15, which i he salowst Reet b
e,

sl s whor e s
Specifcll

(CERDTZHIRRIETNTLND
& (CHReEn

Rt Rttt Reserpreoct)

e % and

e 1 Bk o s . W s o 8 e, e et of s e o e ot
cupe o

o s of D,

Y slrs e
e oo

bl 11 Network Arhietres. Esch convlutionsl Ly s llavd by b normaliztion |
conyS_L witha seice of o, except for DenseNet. st numoer o festre

donnsanpi s petrmed o oo o .

Janda ReLU [15] Sptiocmpora

achiecture.
i Rses ok s twocomolton -

and each comolutonal ayer i followed by batch nor-
miraton and 3 ReL U Shoretpsscomocs s o of

ResNet18 and 34 adopt the
Coneeons and e i o e shrcut o . s
blocks (ipe A in [10] o avoid inceasing the number of
o s el llo metworke
s ek ok conts of e sl
o T el e of e 1t nd
oo e a1 1 1, whers (s of e <eond
35333, The shortcu pass of this block i the e 25
that f he hasic block. ResNete50, 101, 152, and 200 adop
e botleneck. We use enity comnections xcept fr those
it e fr i imensions (37 1

33, Implementation
“Training. We use sochastic sradient descent with momen:
fum 10 tein the aetworks and randomly senerae traning
samples from videos in trsning data in on

i augmentaton. Firs, we seect

P a5 many times s necessary. Next,
we candomly seect a spatis) position fom the 4 orners of
the cente. In sdion 1o th spatal positon, we also select
aspatal sl of the sample inorder to perform muli-scale
coopping. The Dmcemne s s e s 5 23 e
sl i selcted fron
e el 10 40 e e e ot

Scale | means

archiectues, bt there are differences i the convoluion,
batch normlization, nd ReLU order. I ResNet, each
comoltona! e s aoned ty bk ezt o

Whereas each hatch normalization of e pre-
aivation Rt Dl by he RLU s comol

tional he block 0

Il s e e s gt The sample aspect
st e sl o raly oped e
st e, and gt i We sty e he
e 125 112t The st of e e 3
chanels 16 frames x 112 pixels x 112 ixels. and each

o

it ot 5 5 oot 133 2 s Pl s w1 s s ot e com

<o, and

T3 ma o byer (e 3 e e o

ol mmorts o down . 1 o o ey

Tt st o ot et e Bk

Tn their tudy, He et . showed it such pre ctivation

faclitates optmization in the waning and reduces over-

fiting 111, Tn this sudy, pre-activation ResNet-200 wes
1ed.

eremmean lon whieh e bt b
e vl o Ayt o sl o cath colo
ool A e sample et e e 1
i ongilvidn

o . e s s s and ok

e e raed on 1 dtset ht et B 0 sl vy o e WRN et s the e s the Reske (b, POSBH (e s, The o paeters nclude
10 be used for taining deep 3D CNNS from scrach. See Vodel Block Jeneck), bt there s difenenees n e mimber of feauge 2 YIS decay of 0001 tor momenum, When
Section 4.1 for detils. Fow I3 v leneck),but hee ace il en he aumber of feat taining the networks from scratch, we start from learning.
’ e
e o e st e e s o m ps el o e e e e St LS L e o
s e Kt el could i e 3D (18,341 o 3 ‘wide achiectures e effcent n pralel compuing wing /% PO w';‘mmf“ a"  from a learning rate
At v e ey NS0, O GPUS 1] In i udy e evlute the WRN 50 sing
s ool Mherelore, we trained 3D 101,152, 200) . 3 i) 2 widening factor of two, Recognition. We adopi the »hmng»\wmw« manner o gen-
i
ResNets on Kictics whil vrying te ol epth from e . ) Reskei s e
810 200, I Kincicscon i very deop ONN, sieh Rer 200 " s ose menson trom deger and wice. Unlie the o V6frame clip. and ecogize atons i i usin e
25 Reser-I52, which achiewad he b peromarce i WRxS0 Bxtenck w6 m s et o, e Rk, e s ropomo. RS TS G 1 sl copd o 3
ResNets on ImageNet {11 we can be confident that they ReNeXL10] ResNeXt S2o% o, whic divide e fstur, maps i sl goups. S oston e . o an put sl i e
e sulicint aton SDCNNs Throre, e st . Cardaity rfrs t the mumbe of middle comoluonal  PWOrk and s the lip clas o
o hssperinen e cxpsted o vy e RN et s O e e ot e s of e . Tt ot e
ta — al may

Seo Section 4. for deai.

Inanothersudy, Varol el showed that

i e e ind el ed s poptr benchmarks.
Howsr, et conensistas e it s
iy re A 0 T g ot g dcp O
o ol

upleofyears e the shovementioned datasetswere
vmmduwd lngr vido s wor produce. These

st th ey of R 200 was st e same s
o152 his sl i e o of
KNt 00 sared 0 vt

prove s the depih
152, am hn e ccurcis dd ot e
ing the depths of et ittt o Kier
fes dtaset has suficient dat 0 cain 3D CNN in  manner
milar 1o ImageNet.
, Compacsons with ot ahiecues s shown 1 T
. it can be seen th the accuracies of pre-

Figure & s
il vl r
i, The averge uraon of cich o s o

ends. Three trainfest pits (108 3. ting)

Tigure 4 shows the raning snd

tion losses of

are provided i this datast.
AN (113 v sapies e 200

valldation losses on UCK-101, HIVIDB-51, and Activity Net
quickly comerged o high valuss and were clearly igh

Clssand 141 sctiviy nstances pe video. Uik te other

5 used for validaton, and 25

- mau
“Th Kinetios dtaset b 400 uman acton cases, and
o f v i A oo o s o
aporally trimmed and lst acouad 10 séconds. The
ol s of th videos s I ks of 300000
s of i, alaton, s s s e ot
000, 20,000, a5d 40,000, sl
The vy propetes of e
L N vidoo wer xracid rom YoudTube, et o
VD51, whieh nclodes videos xmced o vk,
e v ncle dyranic bckgoundand canes -

cate thatoverfiting esulied when the tining on those the
datasets. I aiton 1 those osse, we confirmed per<l
ih s it fo hlp et o

the standard ResNet-200 though e et al. reporied that he
presctvaion e e nd snproves 2D RosNer

NN hecause the mumier of pars
S0 is larger than the ResNet-152. Furthermore,
e can sce that ResNeX(-101 achieved the bes aceuracics

Tl 2 At e Kt vl 1. e
[ p————

Method Topl Tops Awraze
ResNet-15 s2 1 66l
ResNet 31 w01 we 10
Resiet.50 63 w1 2
ResNet-101 @s wme T3

@0 84 ™I
ResNet 200 a1

ResNet 200 (preact)
WideResNet:50 6.1

DeaseNet- 121
DeaseNet-201 613

Tae 3 Aceuracis on the Kineis st set. Average s cragod
accuricy over Tup-1 and Tp-5. Hor, we e h sl o KGB--
una

expunding the temporal length of nputsfor C3D improves

recognition performence |7 auhos 5o found

g ol fows s s 30 CXNs sl n

s ef efemare tncanbe ot R

ot ht e st poromencs cold b ahind

Combiing RO ad ptal flows. Mesnuiile, Kay o5
3D

uning of
Ko et 30 s UCF 101 o N5

32. Network architeetures

can facilitate the teaining of very deep neworks. Unlike
previous studie that examined only limied 3D ResNet at-
ehitctures 9,241,

Is more effctve than using wider or deeper ones 1] In
his study, we evaluate ResNeXt101 using the cardinality
orn,

DenseNet makes connections from ly lyees to later

Wwachieve goud performanceevels on smal datsets, we e

peet that the deep 3D ResNetsprtined on Kinetcs would

Dot sl o sty sl UCT- 0] d DR

“This experiment cxamines Whether the transie visal ep-

ety dnp D CAN o e don 0
See Section .3 lor deals,

Tale 8¢ Top | accurcies o0 UCT: 101 and FIMDB 51, Al
Facies e averaged ove e spis

T : Top 1 acctracies on UCF 101 TIMDB 51 comares
e st of et s, AL e e et
e sp «

Method UCT-101 HMDD-S1

ResNet 18 cruch) 424 i
64
01

101 4nd HMIDB-51. Here, i can be seen that Kinetics pre
e et 1S sty owperored oo e fom
seratch. Th o i n i s

exchyi 1MDB-
Shamd A NeLar 01, 102,04 2%, el

ihat seen for ImgeNe 01, and means mrodcing e
fo the 3D ResNets on Kiseties In
ot s of b Denseher 121 snd 20 wer

1t Shovld be noted
S a0 ot of prvions s woul 0w e

The major -
{age provide by dense connections s pacameer sfclency

video accu
s, However, snce

loverr K
e

e very low even
‘compared with arler methods [3, 6], ous esuls ndicate
that I s difcul 1o tain deep 3D CNNs from scratch on
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Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
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Abstract

The purpose of this study is to determine whether current
video datasets have sufficient data for training very deep
convolutional neural networks (CNNs) with spatio-temporal
three-dimensional (3D) kernels. Recently, the performance
levels of 3D CNNs in the field of action recognition have
improved significantly. However, to date, conventional re-
search has only explored relatively shallow 3D architectures.
We examine the architectures of various 3D CNNs from rel-
atively shallow to very deep ones on current video datasets.
Based on the results of those experiments, the following con-
clusions could be obtained: (i) ResNet-18 training resulted
in significant overfitting for UCF-101, HMDB-51, and Ac-
tivityNet but not for Kinetics. (ii) The Kinetics dataset has
sufficient data for training of deep 3D CNNs, and enables
training of up to 152 ResNets layers, interestingly similar
to 2D ResNets on ImageNet. ResNeXt-101 achieved 78.4%
average accuracy on the Kinetics test set. (iii) Kinetics pre-
trained simple 3D architectures outperforms complex 2D ar-
chitectures, and the pretrained ResNeXt-101 achieved 94.5%
and 70.2% on UCF-101 and HMDB-51, respectively. The
use of 2D CNN trained on ImageNet has produced signif-
icant progress in various tasks in image. We believe that
using deep 3D CNNss together with Kinetics will retrace the
successful history of 2D CNNs and ImageNet, and stimu-
late advances in computer vision for videos. The codes and
pretrained models used in this study are publicly available .

1. Introduction

The use of large-scale datasets is extremely important
when using deep convolutional neural networks (CNNs),
which have massive parameter numbers, and the use of
CNNs in the field of computer vision has expanded signifi-
cantly in recent years. ImageNet [], which includes more

thttps://github. con/kenshohara/3D- ResNets-PyTorch
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Figure 1: Recent advances in computer vision for images (top)
and videos (bottom). The use of very deep 2D CNN trained on
ImageNet generates outstanding progress in image recognition as
well as in various other t; Can the use of 3D CNNis trained on
Kinetics generates similar progress in computer vision for videos?
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33, Implementation
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previous studie that examined only limied 3D ResNet at-
ehitctures 9,241,

Is more effctve than using wider or deeper ones 1] In
his study, we evaluate ResNeXt101 using the cardinality
orn,

DenseNet makes connections from ly lyees to later

wachieve goud performance evels onsmall dasets,we -

peet that the deep 3D ResNetsprtined on Kinetcs would

peeform well on elatively small UC-101 and HMIDR-S1.

“This experiment cxamines Whether the transie visal ep-

esentaions by deep 3D CNNs from one domna 0 anotier
See Section .3 lor deals,

Tale 8¢ Top | accurcies o0 UCT: 101 and FIMDB 51, Al

than a million images, has contributed to the
creation of successful vision-based algorithms. In addition
to such large-scale datasets, a large number of algorithms,
such as residual learning [10], have been used to improve
image classification performance by adding increased depth
to CNNs, and the use of very deep CNNs trained on Im-
ageNet have facilitated the acquisition of generic feature
representation. Using such feature representation, in turn,
has significantly improved the performance of several other
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Abstract

The purpose of this study is to determine whether current
video datasets have sufficient data for training very deep
convolutional neural networks (CNNs) with spatio-temporal
three-dimensional (3D) kernels. Recently, the performance
levels of 3D CNNs in the field of action recognition have
improved significantly. However, to date, conventional re-
search has only explored relatively shallow 3D architectures.
We examine the architectures of various 3D CNNs from rel-
atively shallow to very deep ones on current video datasets.
Based on the results of those experiments, the following con-
clusions could be obtained: (i) ResNet-18 training resulted
in significant overfitting for UCF-101, HMDB-51, and Ac-
tivityNet but not for Kinetics. (ii) The Kinetics dataset has
sufficient data for training of deep 3D CNNs, and enables
training of up to 152 ResNets layers, interestingly similar
to 2D ResNets on ImageNet. ResNeXt-101 achieved 78.4%
average accuracy on the Kinetics test set. (iii) Kinetics pre-
trained simple 3D architectures outperforms complex 2D ar-
chitectures, and the pretrained ResNeXt-101 achieved 94.5%
and 70.2% on UCF-101 and HMDB-51, respectively. The
use of 2D CNN trained on ImageNet has produced signif-
icant progress in various tasks in image. We believe that
using deep 3D CNNss together with Kinetics will retrace the
successful history of 2D CNNs and ImageNet, and stimu-
late advances in computer vision for videos. The codes and
pretrained models used in this study are publicly available .

1. Introduction
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Figure 1: Recent advances in computer vision for images (top)
and videos (bottom). The use of very deep 2D CNN trained on
ImageNet generates outstanding progress in image recognition as
well as in various other t; Can the use of 3D CNNis trained on
Kinetics generates similar progress in computer vision for videos?
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Abstract

The purpose of thissudy s to determine whether current

improved signiicanly. However,to date, conventional re-
search has nly explored elasvlyshallow 3Darchiecures.
We examine the architctures of various 3D CNN from rel-

wt video dutases

atively shallow i very deep ones on curren

Based onshe resuts ofhose experimens,the ollowing con-

o)™

wow

Kt

[oom

in significant ovefting for UCF-101, HMDB.S1, and Ac-
tivityet hut ot for Kinescs. (i) The Kinetics dataset has
suffcient data or trainin of deep 3 CNNs, and enables
naining of up 10 152 ResNets layers, interestingl similar
020> ResNets on IageNe. ResNeXG- 101 achieved 784%
average accuracy om the Kinetcs et se. (i) Kinetics pre-
ranedsngle Dardicenre o conler2Der
chiectures,and Ined ResNeX'-10] achiered 94.5%

P Ty ——

cant progress in various tasks

g dey 3D CANo cgther with Kinss il e
successful hisiory of 2 CNNs and ImageNet, and stin
are advances in compurer visionfor videos. The codes and
premained models sed in his suds are publicly available .

1. Introduction

The use of arge-sca daases is extemely important
when using deep consolutional neural networks (CNN),

which have massive parameter aumbers, and the s o
NN in the ied of computer vision has expanded

i
cantly in ecent years. nigeNet 1], which ncludes more

P o Rt v b o s s )
i vidns (oo, The s of vty a2 CNN i on
et et cusanding ogres i mae coglin

in variousofcrtass. Canthe e of 3 CNNs e on
Kines snrls Sl g compaer vison for s

han & millon images, has contrbuted substanialy o the
o of st v bsd s, Ty i

such largescale datasets, o e number qr«wmm
oo et e 1], b b e 0

and it e has ke it possble 0 accomplish aditionsl

st s gy vt 1 postion ey e
inelation o e e, Mre an 300 K videos e

oo Kieis et i meas it he
e f i Gt s bt st e
datsers.

el ) comolon s GD CN e

thtvo-dinensions](2D)
ero i From e e a0 L1 D CuR 2
explored 10 provide an effective ool for aceurate action

e s of praners o
3D CNNS wich ar: i e it

NNecunony e ranodonviden
it vumm canbe precined on et
Recenty achieved a sig-

s et

. acuracies o 3D ResNets ver -1 -5
MlheKMelMquanmmr Acsuracy v improne s etwors
s i T mpornens ot il g b

g 2000cioingce Aciighetsboprones i i dtnt vas ot vl s sl o
K I

el even thoughthe esuls

dotction, but the number o action instances s il on the
e oftens of thousands. This year (2017, inan efort to
creat a successul prtsained model, Kay . released the
Kineics daast (1] ‘Th Kinctis dtse ncudes more
b 30,000 tinmed videos conring 100 caegories, In
ik o e et o i i o 3D N

DO o T DS
e o e 20 s ekl ey
Cartica 1 2. proposed inception [22] based 3D CNN:

performance (7], More recently. some works ntroduced

we peroried 4 using these ecent

e
Other huge datasers such s SporteIM [15] and
Yol (1] ke P o, A e
are larger than Kinetcs, their annotatons are

S sty oty i e s e e

sned. (In other words, ey include frames that do not
el o et actons,) Such noise and the psence of
unrelted frames have th potental 0 pecvent hese models
nadition,with e 25 in

St 155 e sy o same 15
o R 15 T et e i 2 s o
InageNet [ 0]

. S CXPErIEN [0
Scton o der) show the Kintesdonet e
30 ReNec52 from srach 0 et i s o

2D ResNets on ImageNet, as

hant o vig e K a5
e infltion of 2D Kernes pretrined on ImageNet i
ones 2], Thus, we now e the hencfitof  sophisticated

Showen in Figure 2. Based on those resuls, we will discuss
the possibiltes offurure progress inacton recogaiion and
er video sks

Howerer,can 3D

sty of
N TNt v ety o o o

3D
iton Previous s doved deper 2D CNNs ined

i action ecogniton and cher varous asks? (See botom
o in Figure 1) To achiove such progs consider
At Kinetis for 3D NN shoukd be s brge scale s e

lowerer, it
Kot vl o show depr 9D CNR e et e

e previous st b th it Sl of g dasls
difrs fom that of video ones. “The fesuls of thi stdy,

eNetfor 2DCNN;
cics, Comsentonil 3D CNN

10 CNNs, and the use of very deep CNNs trained on I
4 e scqustion of gt e

aation: Usig soch e reprsenaion, I

gy e e prkwnance of e mm

o il 0 Kt il ey shllon
i 11 g e Kios
atereni vy e D ONNC o ol o

nmageNet, which can in 152 layer 2D CNNs [ Vi

mage captioniag (see op ron in Figure 1)

T his sy, we examine various 3D CNN archiectures

Tod

nition datascs. Representatve video datases, such s UCF-
101171 and HMDB-S1 [17], can be sed 0 provide ealstc
deos il s stound 10K bt v ey il
used s standard benchmarks, suchdatasetsare bviously o0
il o b o otimsing NN epeseninions from

101, HMDB.S51, and
ActvityNet) in onder o provide us nsights fo answering
e above quesion N archiectues tested in
i sy e bied o sl ety R 10
and thei extended versions | 1] beceuse they
e sl and llcve srucaes. Accordnly, sng

s 10 18, theie scales e simply 100 e to allow
e 10 be uilized easiy. Becsuse of these fsues, we will
e o s e e o Sty

22. Action Recogn

fon Approaches

One o the portar s o O b st
ecogaiion s the use of ta-sican CNNs with 2D con-
olonl Kol 1nhie . Syt s propocd
i 1t s G stk k) o e
s appesrance and moton informatior b [20],
nd ol o ooy e ot e 51
ity 1o improve action ecognition accuracy.  Since that
Sy, numerous methods hased on the tko-szcam CNNS
i e proposd 1 imprve acon cognion e
mance [0,

Unlie the anwm:rrnlmned approsches. we focused on
‘NN with 3D comvolutonal Kernels, which hive recenty
ezun oouteriorn 3D CNRS rosh e e of e sl
viden darasrs. These 3D CNNs are inuiisely ofective

videos.

2. Related Work
2.1. Video Datasets

e HMDB-S1 [17] nd UCE-101 |21 datasets are cur
ity e st sl I e ek of ston cogl

bocanse such "
Spatio-emporal eatures from e videas. For exampl, J

IV datase 5] Since hat sy, C3D has been seen as
4 fcto sandd o 3D CNNS They s cxpermntaly
dinata 13

ResNetarciectures oo 3D CNNs [%, 1, though they

3. Experimental configuration
31 Summary

1o i sudy. i onder o deeemipe wheber curent video
st e suticient i o tmining of eep 3D CNs,
B T
ing UCE-101 211, HMDBS1 117 e [, and
K111 s cmad e g o iy
tallon 30 CNNs from scrtch on cach vdeo et Ac-
coning 1o pevious woks 1. 1], 3D CNNs traned on
UC101, 1IMDB-51 ind ActiviyNetdo ot chive high
sccuracywheres one aned o Kietics work vell Welry
I i s s s it e s
v Sulcen i o dcp > CNNs. Speecl

e RNt 1, hich i e llowes et e
e,
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ResNet-18 and 34 adopt the basi blocks. We use deaity
connections and 7ec0 padding for the shartcuts of the hasic
blocks (ipe A in [10] o avoid inceasing the number of
o s el llo metworke
s ek ok conts of e sl
o T el e of e 1t nd
oo e a1 1 1, whers (s of e <eond
35333, The shortcu pass of this block i the e 25
that f he hasic block. ResNete50, 101, 152, and 200 adop
e botleneck. We use enity comnections xcept fr those
that are wsed for increasing dimensions (e B in ||

“Training. We use stochastic gradientdescent with mommen

fum to rain the networks aad randonly genecat tcining

samples Irom videos in ealing dta in order 10 perform
1a augmentaton. Firs, we seect

frames, thea we loap it a5 many times as necessary. Next,
we candomly seect a spatis) position fom the 4 orners of
the cente. In sdion 1o th spatal positon, we also select
aspatal sl of the sample inorder to perform muli-scale
coopping. The Dmcemne s s e s 5 23 e
sl i selcted fron
e el 10 40 e e e ot

Scale | means

archiectues, bt there are differences i the convoluion,
batch normlization, nd ReLU order. I ResNet, each
comoltona! e s aoned ty bk ezt o

Whereas each hatch normalization of e pre-
aivation Rt Dl by he RLU s comol
tional he block 0

Il s e e s gt The sample aspect
st e sl o raly oped e
st e, and gt i We sty e he
e 125 112t The st of e e 3
chanels 16 frames x 112 pixels x 112 ixels. and each

o

it ot 5 5 oot 133 2 s Pl s w1 s s af o e o

T3 ma o byer (e 3 e e o

ol mmorts o down . 1 o o ey

when being trained on & dataset, that datset is too small
10 be used for taining deep 3D CNN from scrach. See
Section 4.1 for detils,

e e ottt s et e
et e Kiis Gt could i s 30

A i poof i v o drie o e e
et ol hereloe, we irined 3D
Resen o Kints whi vaying o el dopth fom
15 10 200. 17 Kinetis can train very deep CNN, such
25 ResNer 152, which achiced the hest peronmace n
ResNets on InuageNet {11, we can be confident that they
avesulficent dta o cin 3D CANs. Therefoe, e esuls
Ofthis experiment ar expected 0 be very important forthe

Tt st o ot et e Bk

Tn their tudy, He et . showed it such pre ctivation

faclitates optmization in the waning and reduces over-

fiting 111, Tn this sudy, pre-activation ResNet-200 wes
1ed.

“The WRN srchitecture is the same as the ResNet bot
eneck),but there are diffrences n the numbes of feure

perform can subracton, which means tht e subiracthe
mean vales of ActvityNet from the ssmple fr each color
channel. Al genrated sampls etz th same class labels
as thir original videos

1o our aining. we use cross2atropy losses and back-
propasate telr erdients. The tcaaing parauseters nclude
a weight decay of 0.001 and 0 for momentum. When
{raaing the networks from scrtch, we siart from learning

Model Dok com MY
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N e CECENEY
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o 152.200) Portenesk o
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et Pt 3o
WRNSD Botlenesk 3o
RNeXLI0] ResNeXt 3o
DeneNet |
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ayer
ber of feature maps rater than the numbe of ayers. Such
‘wide achiteture ar eficient i pacalel computing using
(GPUS 1] I this sty we evaluate the WRN-50 using
wideaing Rctorof .

fte0.]
e prniag ine tuning, we san o sl e
O 0001, and assign a weight decay of

m-g.mm We adopt the liding window manner 0 gen
i

ResNeX1 i 2 dilren
mension from deeper and wider. Unlike the origiaal

ayer sroups i the botleneck block, Ln telr sty Xie et

6frame clips). and recognize actions n videos using the
e networks. Bach clp is spataly cropped around «
cene gt s e Woden e cch ol o o
networks and esante the clip class scores,

o o el e, T it

Seo Section 4. for deai.
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upleofyears e the shovementioned datasetswere

expunding the temporal length of nputsfor C3D improves

recognition performence |7 auhos 5o found
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ot ht e st poromencs cold b ahind
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32. Network architeetures

orks
previous studie that examined only limied 3D ResNet at-
ehitctures 9,241,

.
Is more effctve than using wider or deeper ones 1] In
his study, we evaluate ResNeXt101 using the cardinality
orn,

DenseNet makes connections from ly lyees to later

Wwachieve goud performanceevels on smal datsets, we e
peet that the deep 3D ResNetsprtined on Kinetcs would
Dot sl o sty sl UCT- 0] d DR
“This experiment cxamines Whether the transie visal ep-
ety dnp D CAN o e don 0

Next, we exp

‘with 3D comolutions used in this study. ResNet, which
e of the most successlul sechiectures n image class-

ication, provides shortcut connections that allw 4 sigaal

o bypass one ayer and move 10 the aext layer i the <

i s s e s of ek, i

Resietssumntion. Thisconcatenion connectscachayer

34, Datasets
Asstaed above, this sy ocuses on our datsets: UCT-
10121, HMDB-S1 7] ActivtyNet ] and Kinevies 1]
101 ncludes 13,320 ation insances fom 101
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Gensely in a feed-forvard Fshion.  DenseNets al
th pe-actvaton used in pr-activation ResNess. In thelr
sy, Huang e al. showed tha it zchicwes hrir accuracy
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Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
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Abstract

The purpose of thissudy s to determine whether current

improved signiicanly. However,to date, conventional re-
search has nly explored elasvlyshallow 3Darchiecures.
We examine the architctures of various 3D CNN from rel-
atively shallow i very deep ones on current video datases
Based onshe resuts ofhose experimens,the ollowing con-
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in significant ovefting for UCF.101, HMDB.S1, and Ac
tivityet hut ot for Kinescs. (i) The Kinetics dataset has
suffcient data or trainin of deep 3 CNNs, and enables
naining of up 10 152 ResNets layers, interestingl similar
020> ResNets on IageNe. ResNeXG- 101 achieved 784%
average accuracy om the Kinetcs et se. (i) Kinetics pre-
et syl Doy ool 2D
chiectures,and Ined ResNeX'-10] achiered 94.5%
P Ty ——

cant progress in various tasks
g dey 3D CANo cgther with Kinss il e
successful hisiory of 2 CNNs and ImageNet, and stin
are advances in compurer visionfor videos. The codes and
premained models sed in his suds are publicly available .

1. Introduction

The use of arge-sca daases is extemely important
when using deep consolutional neural networks (CNN),
which have massive parameter aumbers, and the e of
CNNs in the fied of computer vision has expanded sgnif-
cantly in ecent years. nigeNet 1], which ncludes more

hecps: /7Lt com/kenshaara/ 30 Sestets-PyTorch

—um

6 UCE-101 Gpl 1. ) HMDB 5p 1)

i - e s ompcr i s (o)
i oo, The e of vy e 20 CNNS e o0
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in variousofcrtass. Canthe e of 3 CNNs e on
Kines snrls Sl g compaer vison for s

han & millon images, has contrbuted substanialy o the
o of st v bsd s, Ty i

such largescale datasets, o e number u[«\gunmwm
o el g 1] e b st

SINEIR

In this study (paper/research), ~ ¥2 Our contri

i somewhat lager video dataset, s becore avlble,
and it e has ke it possble 0 accomplish aditionsl

st s gy vt 1 postion ey e
inlton o insge et Mo s 30K v e

ol oo K ot hich st e
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ero i From e e a0 L1 D CuR 2
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s i T mpornens ot il g b

nd?

including 28,000 cton nstances, ActviyNetlsoprovides
some addiions ask

e Kt Gt et compastle vl e i of
I

detction, but the number o action instances i il on the
orderoftens ofthousands. This year (2017, inan efort to
e a el prtatned e, Ky e 1. relesed e
Kineics daast (1] ‘Th Kinctis dtse ncudes more
hin 300000 tinmed videos conring 100 caegories, In
one b derine vt i i s epe 3D O

el even thoughthe esuls
DO o T DS
e o e 20 s ekl ey
Carneica

performance (1]

sttt i 3D CNN [, 1. ey they

we peroried 4 using these ecent
e .
Other huge datasers such s SporteIM [15] and
YouTube-SME (1] have been proposed. ~ Alihough these
databases are Lager thn Kinetcs, the
stighly noisy snd oaly video-level labels huse bee
signed.(In other words, ey include frames that do not
ol o target actons,) Such noie and the presence of
unrelted frames have th potental 0 pevent hese models
nadition,with e 25 in

St 155 e sy o me s
o R 15 T et e i 2 s o
InageNet [ 0]

s thei fine-tuning. The resuls of those xpriments (e
Seston § tor deal) s e s Gt can

sl 0 [ B, theit scales are simply foo large 10 allow
e to be uilized easil. Because o tese ssues, we will
e o s e et o Sty

22. Action Recognition Approaches

Hallow ones,

3. Experimental configuration
31 Summary

Inhis study, in onder t deermine whether cutent video
datasrs v sufcint

e s cxamined the traiing of relaively
hllon 3 CNNs from sratch a each video dser. Ac-
cording 10 previous works |9, 10], 3D CNNs trained on

101 1IMDB 51 ind ActivityNet do notschie hizh

30 ReNer152 from srach 02 e ht

Reskets on

hant o vig e K a5
e infltion of 2 Kernels pretrained on mageNet o 31
ones 2], Thus, we now e the hencfitof  sophisticated

2
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Howerer,can 3D CNNs etcace the sucessful hisory of
2D CNNs and ImageNet? More specifcally.can the use of

Imm"gol\e)vdeevIDCNNHM«MLNMLKNHN
tion. Previous siudies showeeper 2D CNNs I
ormance . lowe

in action recogaiion and othr various fasks? (See bortom
Ao in Figure 1) To achiowe such progress, we consider
At Kinetis for 3D NN shoukd be s brge scale s e
‘geNet for 2D CNN, hough no previous work has cxamined

Kineties. Consentional 3D CNN

10 CNNs, and the use of very deep CNNs trained on I

st e Ftied e ssition of e e
presentation. Using such feaure cpresenaron, n

gy e e prkwnance of e mm

ko vl 0 Kits s sl il ok

mage captioniag (see op ron in Figure 1)

aorl 1k g e Kioaes
e i vt 3D CNNs e
nmageNet, which can in 152 layer 2D CNNs [ Vi
it
T hissudy, 3D CNN architecures

Tod

nition datascs. Representatve video datases, such s UCF-
011 o providerealisic

s with sizes around 10 K, buteven though they e sl
used s standard benchmarks, suchdatasetsare bviously o0
small o be used for opimizing CNN tepresentations from
sertch. Tn the st coupl of years, ActiityNet [, which

L canbeused i

o) AciviyNet.

s

101 MDD 51

101, HMDB.S51, and
ActvityNet) in onder o provide us nsights fo answering
e above quesion N archiectues tested in
i sy e bied o sl ety R 10
and thei extended versions | 1] beceuse they
e sl and llcve srucaes. Accordnly, sng
those datasets, we performed several experiments ined at
{rning and esting those rchiectures from seatch, s well

st th ey of R 200 was st e same s

o152 his sl i e o of
KNt 0 Saried 10 v Inresingl, e resil

simiar o e or 20 et on g 1111 More

pecifcall, he accuracis of both 2D and 3D ResNets -

prove s the depih the depth of

152, amd hn e e ot e e e
ing the depths of results Indicate that the Kine

o st s sl o 3D NS 3 e

milar 1o ImageNet.
, Compacsons with ot ahiecues s shown 1 T
. it can be seen th the accuracies of pre-

cresedd unil rsch

Figure &
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Tigure 4 shows the raning snd

tion losses of

valldation losses on UCK-101, HIVIDB-51, and Activity Net
quickly comerged o high values and were clearly higher

5 used or validtion, and 25
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o f v i A oo o s o
aporally trimmed and lst acouad 10 séconds. The
ol s of th videos s I ks of 300000
s of i, alaton, s s s e ot
000, 20,000, a5d 40,000, sl
i vieo progertcs of il s G
Jar. Mot videos were exiracted from »ﬂ..nu et for
HMDB-S1. which includes videos exiracted from movics.
The vidos e dyanic bckgzonnd o camers

cate thatoverfiting esulied when the tining on those the
datasets. I aiton 1 those osse, we confirmed per<l
ih s it fo hlp et o

the standard ResNet-200 though e et al. reporied that he
st e e snd s 3D Ao
We can alsa see tht the WK

NN hecause the mumier of pars
501 ber than the ResNet 152, Fuhermore
e can sce that ResNeX(-101 achieved the bes aceuracics

s ot rivia 1o show deep 5D CNNs are teter b
e s stes e et ol e o
s oo oo ones. The rsuls of this
Vhich i g 1D CANG e e v, .
gxwua?. e furter progess in compuervisio
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. Video Datasets
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o sttt st poplry )
e h il nd e sl ed s popr b
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romseraeh [19]
A\ couple of years i the sbovementioned datssets
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S a0 ot of prvions s woul 0w e
video accu

The major -
{age provide by dense connections s pacameer sfclency

s, However, snce

1 loworec K
e

e very low even

‘compared with arler methods [3, 6], ous esuls ndicate

that I s difcul 1o tain deep 3D CNNs from scratch on
F-101. HMDB-S1. nd ActiviryNer.

s g o Valdation loses on Kinetics

ittt e onater s, Sice

il i o i

vt o e, a1 s o
D CNN:. we will

Table 3 shows the resuls of the Kinetics test set used
o compare ResNeXI-101, which achieved he highes: ac-
curis, wih e s f e thods. i i e

the sccuracies of ResNeXt101 ace clealy bigh
ottt CID s e s {1 ahich
15 10 ayer network,as well a5 CNN-LSTM and two sieam
NN [16], “This rsult also indicates th effeciveness of
dcpot 3D ttvorks raed on it o conis, RGB-

T

further 30 CNNs on Kinsic,

[
W esized the video o heights of 240 pixls without
chnging their aspect rato and then sored

4. Results and di
4.1, Analyses of raining on each dataset
1 iy riing ResNe 1 on e . Ac
1. 3D

corang o pevos wots NN tralned on
101, HMDB-S1, and ActviyNet do ot achieve igh

s experiment. 1n this
process, we used split 1 of UCE-101 and 1IMDB 51, and

4.2. Analyses of deeper networks
St he dmemenioned xeriven e i
could b e o train ResNet-18 without averfting, we
next examined deeper ResNets using the Kinetis traiing
ot lion et
e il o R s cnges e
on o i, i o e e s
op ] a1 105 s, W can s . sty 0
he depih increasd, accuracies improved, and tha the -
provements coninued unll @aching the depth of 152. We.
a also see thatdeeper ResNet- 132 achieved sigaficant -
provnen of e compare i st 13, e

was the previously iectue [2, 21 Tn con-
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i Rses ok s twocomolton -
and each comolutonal ayer i followed by batch nor-

miraton and 3 ReL UL A shoret s coms e

e basic locks. We use deatiry
connections and 7ec0 padding for the shartcuts of the hasic
blocks (ipe A in [10] o avoid inceasing the number of
o s el llo metworke
s ek ok conts of e sl

o T el e of e 1t nd
oo e a1 1 1, whers (s of e <eond

35333, The shortcu pass of this block i the e 25
that f he hasic block. ResNete50, 101, 152, and 200 adop
e botleneck. We use identity connections xcept for tose
that are wsed for increasing dimensions (ipe T in 1]

ibution(s)~ 7R EFEE(CIRND

33, Implementation
“Training. We use sochastic sradient descent with momen:
fum 10 tein the aetworks and randomly senerae traning
samples from videos in trsning data in on
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s P a5 many times s necessary. Next,
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the cente. In sdion 1o th spatal positon, we also select
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Scale | means
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U, whereas each baich nornalization of the pre-
seirtion Rese s ollove by the RoL s 3 ol

Lona e o5 connects e op o e lock o

study, we examine various 3D CNN architectures

from relatively shallow to very deep ones using the Kinetics
and other popular video datasets (UCF-101, HMDB-51, and
ActivityNet) in order to provide us insights for answering
the above question. The 3D CNN architectures tested in

this study are based on residual networks (ResNets) [

and their extended versions [1 1, !

—y - -

have simple and effective structures.

) 3()
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| because they
Accordingly, using

those datasets, we performed several experiments aimed at
training and testing those architectures from scratch, as well
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Abstract

The purpose of thissudy s to determine whether current

levels of 3D CNNs in she fed of
improved significanl. Howerer, to do
search has nly explored elasvlyshallow 3Darchiecures.
We examine the architctures of various 3D CNN from rel-
atively shallow i very deep ones on current video datases
Based onshe resuts ofhose experimens,the ollowing con-
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in significant ovefting for UCF.101, HMDB.S1, and Ac
tivityet hut ot for Kinescs. (i) The Kinetics dataset has
suffcient data or trainin of deep 3 CNNs, and enables
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Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
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Abstract—The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+
papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV.

Index Terms—Futuristic Computer Vision, CVPR/ICCV/ECCV/NIPS Survey
4 X

1 INTRODUCTION

N the last decade, the computer vision field has greatly
developed as the results of revolutional techniques. Im-
age representations llke Sl]'-'l‘ [1], Haar-like [2] and HOG [3]
‘have made d in the p both

a couple of workshops to find brave new ideas in the
future. Especially in the PRMU, the community has thought
futuristic technologies in computer vision since 2007. The
PRMU decided 10 futuristic problems @ © @ kv 79z v7 |
in 2009. They recognized image und

Gl AbyTo4vF | T594 . 2 X

mﬂed; object and image More

L : algorithms achieved general object recognition
[4], SVM) and 3D reconstruction in a large
. However, the most influenced algorithm is to
_convolutional neural networks (DCNN) in 2012.
ant CNN result was obtained by AlexNet
012 [6], which remains the image recogni-
1,N0 classes. The effectiveness of transfer
‘was shown with a pre-
!71 Recently, the DCNN framework
such as stereo match-

and image ca
difficult problem, however, the pro
recent DCNN. (e.g. semantic segn
image captioning [22], [23], [24])
required in the computer

@ - C | ®& httpsy//c

named cupaper.challenge. The
projectaimed at reading & writing
of computer vision and pattern
project is run by around 20 meml
organizations. We here describe o
reading and (ii) writing
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