Pre-training without Natural Images

Hirokatsu Kataoka

AIST <u>http://www.hirokatsukataoka.net/</u>

1

What has the DNNs brought?

Benefits

 Solving various AI tasks, e.g., vision, language, audio, are widely recognized

Challenges in DNN research

Annotation labor

[Large amount of annotation]

Privacy-preserving on the Internet photos

Takes 2 years, around 50k participants on AI 100⁺M img DLs, 14M imgs across 21k ctgrs

[Privacy-preserving]

Privacy is a concern, limiting the use of these images to academic/educational purposes

Barriers of annotation & privacy pose significant challenge for AI apps

Ethics issues in image datasets for CV

Fairness and transparency have arisen

– Offensive labels, dataset bias, transparency

[Offensive labels]

- 80M Tiny Images had offensive labels
- The dataset was suspended from public access due to the difficulty of labeling and resolution

https://groups.csail.mit.edu/vision/TinyImages/

[Dataset bias]

Widely used ImageNet also faces fairness, there includes biased distributions in terms of gender/race depending on the category

https://arxiv.org/pdf/1912.07726.pdf

[Transparency]

Estimated 6% label errors are included on ImageNet

C. G. Northcutt, et al. "Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks" <u>https://arxiv.org/pdf/2103.14749.pdf</u>

AI community recognizes ethical issues

Huge-scale datasets

JFT-300M (Google, 2017/2021) / IG-3.5B (Meta, 2018) 300M images / 375M labels 3.5B images / 3.5B weak labels

These datasets are x100 larger than ImageNet, improve image representation and recognition performance

-> large—scale datasets benefits both CNN and ViT in pre-training

Drawback of private datasets within an organization may limit the research community

Recent vision-driven learning

Supervised Learning

remains the most promising framework, providing pre-trained models serve as a good features

e.g. ImageNet, Places, Open Images

Self-supervised Learning (SSL)

uses visual labels to create a pre-trained model in a cost-efficient way

SimCLR + ResNet-50 69%@ImageNet val.

[Chen et al. ICML20]

Existing the problems of image downloading and privacy-violations

Overview of self-supervised learning

SSL is approaching the performance of SL, particularly w/ ImageNet pre-train

Masked AutoEncoder (MAE) masks parts of an image and reconstructs them to learn visual representations

Ethical problems can occur as long as we use real images

To overcome the problems, it is better to automatically create datasets without any natural images

Fairness, Accountability, Transparency and Ethics

Privacy

Can we pre-train DNN without any natural images?

Formula-driven Supervised Learning (FDSL)

- Generate image patterns and their labels
- Using mathematical formulas and/or functions

Observed fractal geometry on ImageNet dataset

We hypothesize DNN could learn natural principles from ImageNet? Directly render and train Fractals

To replace a human-annotated dataset in context of pre-training without any real images and human labels

Pre-training without Natural Images

ACCV 2020 Best Paper Honorable Mention Award International Journal of Computer Vision (IJCV), 2022

Hirokatsu Kataoka

AIST <u>http://www.hirokatsukataoka.net/</u>

Proposed method: FractalDB Pre-trained CNN

Formula-Driven Supervised Learning (FDSL)

 to make pre-trained CNN from a mathematical formula
without relying on human/self-supervision & natural images

Fractal Database to make a pre-trained CNN model without any natural images.

Results comparable to real images & human supervision

FractalDB

to make a pre-trained CNN without any natural images
for a concept of Formula-driven Supervised Learning

Ability to effectively train models based on natural laws

11

IFS = {
$$\mathcal{X}; w_1, w_2, \cdots, w_N; p_1, p_2, \cdots, p_N$$
} # Transformation probability
 $w_i(\boldsymbol{x}; \theta_i) = \begin{bmatrix} a_i & b_i \\ c_i & d_i \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} e_i \\ f_i \end{bmatrix}$ # Affine transformation

Iteratively renders a large number of dots or patches in an image 12

Search for fractal categories

Randomly select parameters to render

- 1. Fractal image rendering with randomized params $a \sim f$, $w \approx /$ IFS
- 2. If the filling rate (> *r*), the fractal category is added to DB
- 3. Repeated up to defined #category (*C*)
 - Parameter separation makes a different fractal category

Fractal categories on FractalDB

Instance augmentation in each category

Three different augmentation methods

- 1. Parameter set variations (x25)
- 2. Image rotation (x4)
- 3. Patch pattern (x10)

Image rotation (x4)

Patch pattern (x10) Select 10 rando 3x3 patch patterns out of 256 (2⁸)

Up to x1000 instances per category

Experimental setting

Pre-training & Fine-tuning

- Pre-training done without using any real images
- Fine-tuning in a traditional manner

Fine-tuning on real image datasets

e.g. CIFAR-10/100, Places, ImageNet

Parameter tunings on FractaIDB pre-trained CNN

Through the exploration study, our findings that:

- #Category, #instance, and patch-rendering are the most effective parameters on the pre-training phase
- A more difficult pre-train is slightly better in weights

Please refer to our main paper for more details

Experimental comparisons on SL, SSL, and FDSL

Method	Pre-train Img	Type	C10	C100	IN1k	P365	VOC12	OG
Scratch		—	87.6	62.7	76.1	49.9	58.9	1.1
DC-10k	Natural	Self-supervision	89.9	66.9	66.2	51.5	67.5	15.2
Places-30	Natural	Supervision	90.1	67.8	69.1	_	69.5	6.4
Places-365	Natural	Supervision	94.2	76.9	71.4	_	78.6	10.5
ImageNet-100	Natural	Supervision	91.3	70.6		49.7	72.0	12.3
ImageNet-1k	Natural	Supervision	96.8	84.6	—	50.3	85.8	17.5
FractalDB-1k	Formula	Formula-supervision	93.4	75.7	70.3	49.5	58.9	20.9
FractalDB-10k	Formula	Formula-supervision	94.1	77.3	71.5	50.8	73.6	29.2

Underlined bold: best score, Bold: second best score

Results (1/5)

Comparison between training from scratch and proposed methods

Method	Pre-train Img	Type	C10	C100	IN1k	P365	VOC12	OG
Scratch		—	87.6	62.7	76.1	49.9	58.9	1.1
DC-10k	Natural	Self-supervision	89.9	66.9	66.2	51.5	67.5	15.2
Places-30	Natural	Supervision	90.1	67.8	69.1	_	69.5	6.4
Places-365	Natural	Supervision	94.2	76.9	71.4	_	78.6	10.5
ImageNet-100	Natural	Supervision	91.3	70.6		49.7	72.0	12.3
ImageNet-1k	Natural	Supervision	96.8	84.6	_	50.3	85.8	17.5
FractalDB-1k	Formula	Formula-supervision	93.4	75.7	70.3	49.5	58.9	20.9
FractalDB-10k	Formula	Formula-supervision	94.1	77.3	71.5	50.8	73.6	<u>29.2</u>

Underlined bold: best score, Bold: second best score

FractalDB pre-trained model achieved much higher rates than training from scratch

Comparison between SSL and proposed methods

Method	Pre-train Img	Type	C10	C100	IN1k	P365	VOC12	OG
Scratch	-	—	87.6	62.7	76.1	49.9	58.9	1.1
DC-10k	Natural	Self-supervision	89.9	66.9	66.2	51.5	67.5	15.2
Places-30	Natural	Supervision	90.1	67.8	69.1	_	69.5	6.4
Places-365	Natural	Supervision	94.2	76.9	71.4	_	78.6	10.5
ImageNet-100	Natural	Supervision	91.3	70.6		49.7	72.0	12.3
ImageNet-1k	Natural	Supervision	96.8	84.6	_	50.3	85.8	17.5
FractalDB-1k	Formula	Formula-supervision	93.4	75.7	70.3	49.5	58.9	20.9
FractalDB-10k	Formula	Formula-supervision	94.1	77.3	71.5	50.8	73.6	<u>29.2</u>

Underlined bold: best score, Bold: second best score

In the most cases, our method surpasses DeepCluster with 10k categories

Results (1/5)

Comparison between SL with 100k-order datasets and proposed methods

Method	Pre-train Img	Type	C10	C100	IN1k	P365	VOC12	OG
Scratch		—	87.6	62.7	76.1	49.9	58.9	1.1
DC-10k	Natural	Self-supervision	89.9	66.9	66.2	51.5	67.5	15.2
Places-30	Natural	Supervision	90.1	67.8	69.1	—	69.5	6.4
Places-365	Natural	Supervision	94.2	76.9	71.4	_	78.6	10.5
ImageNet-100	Natural	Supervision	91.3	70.6		49.7	72.0	12.3
ImageNet-1k	Natural	Supervision	96.8	<u>84.6</u>	—	50.3	85.8	17.5
FractalDB-1k	Formula	Formula-supervision	93.4	75.7	70.3	49.5	58.9	20.9
FractalDB-10k	Formula	Formula-supervision	94.1	77.3	71.5	50.8	73.6	<u>29.2</u>

Underlined bold: best score, Bold: second best score

The FractalDB pre-trained model is still better than 100k-order supervised datasets

Results (1/5)

Comparison between SL with 1M-order datasets and proposed methods

Method	Pre-train Img	Type	C10	C100	IN1k	P365	VOC12	OG
Scratch	-	-	87.6	62.7	76.1	49.9	58.9	1.1
DC-10k	Natural	Self-supervision	89.9	66.9	66.2	51.5	67.5	15.2
Places-30	Natural	Supervision	90.1	67.8	69.1	_	69.5	6.4
Places-365	Natural	Supervision	94.2	76.9	71.4	10-20	78.6	10.5
ImageNet-100	Natural	Supervision	91.3	70.6	10000	49.7	72.0	12.3
ImageNet-1k	Natural	Supervision	<u>96.8</u>	<u>84.6</u>		50.3	85.8	17.5
FractalDB-1k	Formula	Formula-supervision	93.4	75.7	70.3	49.5	58.9	20.9
FractalDB-10k	Formula	Formula-supervision	94.1	77.3	71.5	50.8	73.6	<u>29.2</u>

Underlined bold: best score, Bold: second best score

Our method partially surpasses the ImageNet/Places pre-trained models

Auto-generated label and use of real images in DeepCluster and Fractal images

Mtd	PT Img	C10	C100	IN1k	P365	VOC12	OG
DC-10k	Natural	89.9	66.9	66.2	51.2	67.5	15.2
DC-10k	Formula	83.1	57.0	65.3	53.4	60.4	15.3
F1k	Formula	93.4	75.7	70.3	49.5	58.9	20.9
F10k	Formula	94.1	77.3	71.5	50.8	73.6	29.2

Bold: best score

Our results suggest that self-supervision alone is not enough to effectively pretrain for recognizing real images, this shows our method assigns an appropriate image pattern and the category

Results (3/5)

Evaluation of frozen conv layers

Freezing layer(s)	C10	C100	IN100	P30
Fine-tuning	93.4	75.7	82.7	75.9
Conv1	92.3	72.2	77.9	74.3
Conv1–2	92.0	72.0	77.5	72.9
Conv1–3	89.3	68.0	71.0	68.5
Conv1–4	82.7	56.2	55.0	58.3
Conv1–5	49.4	24.7	21.2	31.4
	h h h		\frown	

Full fine-tuning resulted the best score

Moreover, earlier layers tend to be good feature representations

Compared to Perlin noise and Bezier curves

Pre-training	C10	C100	IN100	P30	Perlin Noise
Scratch	87.6	60.6	75.3	70.3	0000000
Bezier-144	87.6	62.5	72.7	73.5	8011000
Bezier-1024	89.7	68.1	73.0	73.6	Bezier Curves
Perlin-100	90.9	70.2	73.0	73.3	
Perlin-1296	90.4	71.1	79.7	74.2	
FractalDB-1k	93.4	75.7	82.7	75.9	

We compare Formula-driven Supervised Learning with other principles The FractalDB pre-training expected to improve from other methods

Results (5/5)

Visualization of Conv1

FractalDB pre-training acquires different representations, yet focuses on similar areas

Paradigm Shift in Computer Vision

'Convolution' to 'Self-attention'

Computer vision researchers are now exploring ways to replace convolutional layers with Transformer encoders ²

Can Vision Transformers Learn without Natural Images?

AAAI 2022

Hirokatsu Kataoka

AIST <u>http://www.hirokatsukataoka.net/</u>

Vision Transformer (ViT), so far

One more shift in Transformer

- VIT (JFT-300M pre-train) to DeiT (ImageNet-1k pre-train)
- 300M image pre-training was replaced by million images

Can ViT learn without real images?

Settings of Architecture and Dataset

Architecture

- ViT
 - No difference from the original vision transformer
 - We assign richer data augmentation proposed in DeiT

Dataset

- FractalDB
 - Grayscale is better than colored FractalDB
 - ResNet: colored FractalDB is slightly better
 - DeiT: grayscale FractalDB is better
 - Longer pre-training is better
 - 300 epochs in ViT

FractaIDB pre-trained Vision Transformer

- We succeeded a ViT pre-training without real images

vs. Supervised Learning

PT	PT Img	РТ Туре	C10	C100	Cars	Flowers	VOC12	P30	IN100
Scratch	-	-	78.3	57.7	11.6	77.1	64.8	75.7	73.2
Places-30	Natural	Supervision	95.2	78.5	69.4	96.7	77.6	_	86.5
Places-365	Natural	Supervision	97.6	83.9	89.2	99.3	84.6	_	<u>89.4</u>
ImageNet-100	Natural	Supervision	94.7	77.8	67.4	97.2	78.8	78.1	_
ImageNet-1k	Natural	Supervision	<u>98.0</u>	<u>85.5</u>	<u>89.9</u>	<u>99.4</u>	<u>88.7</u>	<u>80.0</u>	_
FractalDB-1k	Formula	Formula-supervision	96.8	81.6	86.0	98.3	84.5	78.0	87.3
FractalDB-10k	Formula	Formula-supervision	97.6	83.5	87.7	98.8	86.9	78.5	88.1

Underlined bold: best score, Bold: second best score

FractalDB pre-trained model showed significantly improved performance compared to training from scratch

vs.	Supe	rvised	Learning
-----	------	--------	----------

РТ	PT Img	РТ Туре	C10	C100	Cars	Flowers	VOC12	P30	IN100
Scratch	_	_	78.3	57.7	11.6	77.1	64.8	75.7	73.2
Places-30	Natural	Supervision	95.2	78.5	69.4	96.7	77.6	_	86.5
Places-365	Natural	Supervision	97.6	83.9	89.2	99.3	84.6	_	<u>89.4</u>
ImageNet-100	Natural	Supervision	94.7	77.8	67.4	97.2	78.8	78.1	_
ImageNet-1k	Natural	Supervision	<u>98.0</u>	<u>85.5</u>	<u>89.9</u>	<u>99.4</u>	<u>88.7</u>	<u>80.0</u>	_
FractalDB-1k	Formula	Formula-supervision	96.8	81.6	86.0	98.3	84.5	78.0	87.3
FractalDB-10k	Formula	Formula-supervision	97.6	83.5	87.7	98.8	86.9	78.5	88.1
									1

Underlined bold: best score, **Bold**: second best score

Though our method was not able to beat the ImageNet pre-trained model,

the FractalDB pre-trained model partially surpassed the Places

vs. Self-supervised Learning

Method	Use Natural Images?	C10	C100	Cars	Flowers	VOC12	P30	Average
Jigsaw	YES	96.4	82.3	55.7	98.2	82.1	80.6	82.5
Rotation	YES	95.8	81.2	70.0	96.8	81.1	79.8	84.1
MoCov2	YES	96.9	83.2	78.0	98.5	85.3	<u>80.8</u>	87.1
SimCLRv2	YES	97.4	<u>84.1</u>	84.9	<u>98.9</u>	86.2	80.0	88.5
FractalDB-10k	NO	<u>97.6</u>	83.5	<u>87.7</u>	98.8	<u>86.9</u>	78.5	<u>88.8</u>
		U	nderlin	ed bold	: best scor	e. Bold: s	econd I	best score

The proposed method recorded higher scores compared to SSL methods such as MoCoV2, rotation, and jigsaw puzzle

vs. Self-supervised Lea	arning
-------------------------	--------

Method	Use Natural Images?	C10	C100	Cars	Flowers	VOC12	P30	Average
Jigsaw	YES	96.4	82.3	55.7	98.2	82.1	80.6	82.5
Rotation	YES	95.8	81.2	70.0	96.8	81.1	79.8	84.1
MoCov2	YES	96.9	83.2	78.0	98.5	85.3	<u>80.8</u>	87.1
SimCLRv2	YES	97.4	<u>84.1</u>	84.9	<u>98.9</u>	86.2	80.0	88.5
FractalDB-10k	NO	<u>97.6</u>	83.5	<u>87.7</u>	98.8	<u>86.9</u>	78.5	<u>88.8</u>
		U	nderline	ed bold	: best scor	re, Bold : s	econd I	pest score

FractalDB-10k pre-trained ViT recorded a slightly higher in average accuracy on various benchmarks (88.8 vs. 88.5)

Visualization of attention maps

FractalDB pre-trained model focuses on contours

– The figures show attention on fractal images

(d) Attention maps in fractal images with FractalDB-1k pre-trained DeiT. The brighter areas show more attentive areas.

Visualization

Characteristics of FDSL, SSL, and SL

Pre-Training

(a) RGB Embedding Filters

ilters (b) Position Embedding Similarity (c)Mean Attention Distance

Initial filter representation

Ours is similar with SL and SSL representations

(b) Position Embedding Similarity (c)Mean Attention Distance

(a) RGB Embedding Filters

Pre-Training

Cosine similarity of positional embeddings

Similar positional embedding to SL

(a) RGB Embedding Filters

(b) Position Embedding Similarity

Pre-Training

38

(c)Mean Attention Distance

Attention distance visualization

Looks at wider areas within an image

Pre-Training

(a) RGB Embedding Filters

(b) Position Embedding Similarity (c)Mean Attention Distance

Can vision transformers learn without natural images?

 \rightarrow Answer is "Yes". The FractalDB pre-training achieved comparable performance to ImageNet-1k pre-training

Replacing Labeled Real-image Datasets with Auto-generated Contours

CVPR 2022

Hirokatsu Kataoka^{*}, Ryo Hayamizu^{*}, Ryosuke Yamada^{*}, Kodai Nakashima^{*}, Sora Takashima^{*,**}, Xinyu Zhang^{*,**}, Edgar Josafat MARTINEZ-NORIEGA^{*,**}, Nakamasa Inoue^{*,**}, Rio Yokota^{*,**}

* National Institute of Advanced Industrial Science and Technology (AIST) **Tokyo Institute of Technology Can Vision Transformers Learn without Natural Images? (AAAI22)

Successfully trained a FractalDB pre-trained ViT

- Reducing the use of real images 14M to 0
- Exploring the reason behind the success

Visualizing self-attention in ViT

 \rightarrow The fact describes that it focuses on object contours, rather than use of fractals

Two hypotheses regarding FDSL pre-training

Hypothesis 1: Object contours are what matter

Hypothesis 2: Task difficulty matters

@Extended FractalDB

(ExFractalDB)

43

ImageNet-1k / MS COCO dataset

Image Classification / Object Detection, Instance Segmentation

Real images: ImageNet-21k	Accuracy on			
	ImageNet-1k	Pre-training	COCO Det	COCO Inst Seg
	81.8%	6	$\rm AP_{50}$ / AP / $\rm AP_{75}$	AP_{50} / AP / AP_{75}
		Scratch	63.7 / 42.2 / 46.1	60.7 / 38.5 / 41.3
3D fractal images:		ImageNet-1k	69.2 / 48.2 / 53.0	66.6 / 43.1 / 46.5
ExFractalDB-21k	82 7%	ImageNet-21k	70.7 / 48.8 / 53.2	67.7 / 43.6 / 47.0
	021//0	ExFractalDB-1k	69.1 / 48.0 / 52.8	66.3 / 42.8 / 45.9
		ExFractalDB-21k	69.2 / 48.0 / 52.6	66.4 / 42.8 / 46.1
Contour images: RCDB-21k		RCDB-1k	68.3 / 47.4 / 51.9	65.7 / 42.2 / 45.5
	82 4%	RCDB-21k	67.7 / 46.6 / 51.2	64.8 / 41.6 / 44.7
	021170			

Exceeded ImageNet-21k pre-training Radial contours also surpassed the accuracy

with ImageNet pre-training in addition to Fractal pre-training

Our pre-trained models perform good finetuning results on COCO with a pre-training from only contour classification

Object contours are what matter in FDSL datasets

Radial contour pre-training achieved similar results as FractalDB without extensive parameter tuning

Hypothesis 2

Task difficulty matters in FDSL pre-training

@FractalDB [Kataoka+, ACCV20]

- 3D Fractal rendering
- Projecting onto 2D image plane from a random viewpoint

- We mainly adjust #vertices
- Additional parameters, e.g., *#polygons*, smoothness for category generation

Pre-training	C10	C100	Cars	Flowers
BC	96.9 (0.2)	81.4 (1.1)	85.9 (3.1)	97.9 (-0.6)
RCDB	97.0 (0.2)	82.2 (0.6)	86.5 (2.4)	98.9 (0.2)
ExFractalDB	97.2 (0.4)	81.8 (0.2)	87.0 (1.0)	98.9 (0.6)

In relation to #formula-parameters, the image variation contributes to the pre-training effect

Failure modes in FractalDB

Investigate when and how FDSL can fail

In point-rendered FractalDB, although the fractal images with 50k points trained the visual representations, the fractal images with 10k points failed

We deliberately draw lines with the same color as the background

At the same time, the RCDB with broken contours failed to acquire a visual representation. The attention and accuracy were also broken from the visualization and result

Point Cloud Pre-training with Natural 3D Structures

CVPR 2022

Ryosuke Yamada*, Hirokatsu Kataoka*, Naoya Chiba**, Yukiyasu Domae*, Testuya Ogata*, **

* National Institute of Advanced Industrial Science and Technology (AIST) **Waseda University Construction of a pre-training 3D dataset is challenging, as there is no equivalent to ImageNet in the 2D image domain

Can we acquire a general 3D representation from a principle in our real world?

Formula-driven 3D Point Cloud Pre-training

Overview of formula-driven 3D point cloud pre-training

Point Cloud Fractal Database: 3D fractal generation

How could we render 3D Fractal model \rightarrow Extend the transformation matrix from 2D to 3D

 $3D IFS = \{(w_j, p_j)\}_{j=1}^{N} \quad \substack{w_j: \text{ Affine Transformation} \\ p_j: \text{ Selection probability}}$

1. 3D-IFS parameters setting

3. Variance check & category definition

min(Var[x], Var[y], Var[z]) = 0.17 ... > 0.15

2. Affine transformation

 $\mathbf{x}_{i} = w_{j} \mathbf{x}_{i-1}$ $(i = 1, 2, 3, \dots, n)$ $\mathbf{x} = [x, y, z]^{T}$

3D fractal model: $P = \{x_0, x_1, ..., x_N\}$

Instance augmentation / 3D scene generation

Important to construct a 3D scene from 3D fractal models

Comparisons on ScanNetV2 / SUN RGB-D

Pre-training	Backbone	Parameter	Input	ScanNetV2		SUN RGB-D	
				mAP@0.25	mAP@0.50	mAP@0.25	mAP@0.50
Scratch	PointNet++	0.95M	Geo + Height	57.9	32.1	57.4	32.8
Scratch	SR-UNet	38.2M	Geo	57.0	35.8	56.1	34.2
RandomRooms [51]	PointNet++	0.95M	Geo + Height	61.3	36.2	59.2	35.4
PointContrast [67]	SR-UNet	38.2M	Geo	59.2	38.0	57.5	34.8
CSC [26]	SR-UNet	38.2M	Geo	-	39.3	-	<u>36.4</u>
PC-FractalDB	PointNet++	0.95M	Geo + Height	61.9	38.3	59.4	33.9
PC-FractalDB	PointNet++ $\times 2$	38.2M	Geo + Height	<u>63.4</u>	<u>39.9</u>	<u>60.2</u>	35.2
PC-FractalDB	SR-UNet	38.2M	Geo	59.4	37.0	57.1	35.9

Underlined bold: best score

Ours

PC-FractalDB 61.9 vs 59.2 (PointContrast; ECCV 2020) vs 61.3 (RandomRoom; ICCV 2021)

ScanNetV2 / mAP @ 0.25

Baseline

Pre-training comparison between classification and detectionWe only add detection head in VoteNet, with PointNet++ backbone

Self-supervised label and formula-supervised label on PC-FractaIDB

- Self-supervised label: PointContrast (ECCV 2020)
- Formula-supervised label: Fractal category (ours)

Supervisor label	ScanNetV2 mAP@0.25	SUN RGB-D mAP@0.25
PointContrast (SSL) 3D IFS (FDSL)	57.6 59.4	54.3 57.1
	It is better to label from a s	assign data and ingle equation

Higher accuracy on a dataset with limited data

Future direction (1/4)

Aim to explore better pre-trained models

- FDSL pre-training partially outperformed supervised pre-training with real images, e.g., ImageNet-1k/Places-365
- 80M Tiny Images/ ImageNet (human-related categories) withdrew the public access
- FDSL achieved impressive results without relying on real images

Future direction (2/4)

FDSL exhibits a unique capability to understand natural images without any natural images

- FDSL allows for steerable pre-training adapts to the fine-tuning task at hand
- Free to create a diverse labeled dataset: Geometric model, object detection, semantic segmentation…
- FDSL has the potential to be a flexible pre-training dataset for a broad range of tasks

Future direction (3/4)

Are fractals a good rendering formula?

- We are continuously exploring better principles for FDSL
- The framework is not limited to fractal geometry, and can employ any principles to generate labeled images

Future direction (4/4)

Constructing foundation models (FMs)

Q. How to compete the tech giants in FMs? \rightarrow A. We must try to implement the FDSL framework!

For the research community

Learning to see looking at noise / shaders (MIT Torralba Lab.) https://mbaradad.github.io/learning with noise/

AI Robust with mixed fractals (UC Berkeley)

We'd like to solve the problem in the wider research community, join us!

Our goal is to improve FDSL to potentially replace the pre-trained model done with real images and human annotations, addressing concerns around ethical and annotation issues

